java实现高斯赛德尔算法解线性方程组
【摘要】
package
linear_equation;
import
java.util.Scanner;
/*使用高斯赛德尔迭代法求解线性方程组*/
public
class
Gauss_Seidel_Iterate {
/...
package
linear_equation;
import
java.util.Scanner;
/*使用高斯赛德尔迭代法求解线性方程组*/
public
class
Gauss_Seidel_Iterate {
/*求下三角*/
private
static
float
[][] find_lower(
float
data[][],
int
k){
int
length=data.length;
float
data2[][]=
new
float
[length][length];
if
(k>=
0
){
for
(
int
i=
0
;i<=length-k-
1
;i++){
for
(
int
j=
0
;j<=i+k;j++){
data2[i][j]=data[i][j];
}
}
for
(
int
i=length-k;i<length;i++){
for
(
int
j=
0
;j<length;j++){
data2[i][j]=data[i][j];
}
}
}
else
{
for
(
int
i=-k;i<length;i++){
for
(
int
j=
0
;j<=i+k;j++){
data2[i][j]=data[i][j];
}
}
}
return
data2;
}
/*求原矩阵的负*/
private
static
float
[][] opposite_matrix(
float
[][] data){
int
M=data.length;
int
N=data[
0
].length;
float
data_temp[][]=
new
float
[M][N];
for
(
int
i=
0
;i<M;i++){
for
(
int
j=
0
;j<N;j++){
data_temp[i][j]=-data[i][j];
}
}
return
data_temp;
}
/*原矩阵去掉第i+1行第j+1列后的剩余矩阵*/
private
static
float
[][] get_complement(
float
[][] data,
int
i,
int
j) {
/* x和y为矩阵data的行数和列数 */
int
x = data.length;
int
y = data[
0
].length;
/* data2为所求剩余矩阵 */
float
data2[][] =
new
float
[x -
1
][y -
1
];
for
(
int
k =
0
; k < x -
1
; k++) {
if
(k < i) {
for
(
int
kk =
0
; kk < y -
1
; kk++) {
if
(kk < j) {
data2[k][kk] = data[k][kk];
}
else
{
data2[k][kk] = data[k][kk +
1
];
}
}
}
else
{
for
(
int
kk =
0
; kk < y -
1
; kk++) {
if
(kk < j) {
data2[k][kk] = data[k +
1
][kk];
}
else
{
data2[k][kk] = data[k +
1
][kk +
1
];
}
}
}
}
return
data2;
}
/* 计算矩阵行列式 */
private
static
float
cal_det(
float
[][] data) {
float
ans=
0
;
/*若为2*2的矩阵可直接求值并返回*/
if
(data[
0
].length==
2
){
ans=data[
0
][
0
]*data[
1
][
1
]-data[
0
][
1
]*data[
1
][
0
];
}
else
{
for
(
int
i=
0
;i<data[
0
].length;i++){
/*若矩阵不为2*2那么需求出矩阵第一行代数余子式的和*/
float
[][] data_temp=get_complement(data,
0
, i);
if
(i%
2
==
0
){
/*递归*/
ans=ans+data[
0
][i]*cal_det(data_temp);
}
else
{
ans=ans-data[
0
][i]*cal_det(data_temp);
}
}
}
return
ans;
}
/*计算矩阵的伴随矩阵*/
private
static
float
[][] ajoint(
float
[][] data) {
int
M=data.length;
int
N=data[
0
].length;
float
data2[][]=
new
float
[M][N];
for
(
int
i=
0
;i<M;i++){
for
(
int
j=
0
;j<N;j++){
if
((i+j)%
2
==
0
){
data2[i][j]=cal_det(get_complement(data, i, j));
}
else
{
data2[i][j]=-cal_det(get_complement(data, i, j));
}
}
}
return
trans(data2);
}
/*转置矩阵*/
private
static
float
[][]trans(
float
[][] data){
int
i=data.length;
int
j=data[
0
].length;
float
[][] data2=
new
float
[j][i];
for
(
int
k2=
0
;k2<j;k2++){
for
(
int
k1=
0
;k1<i;k1++){
data2[k2][k1]=data[k1][k2];
}
}
/*将矩阵转置便可得到伴随矩阵*/
return
data2;
}
/*求矩阵的逆,输入参数为原矩阵*/
private
static
float
[][] inv(
float
[][] data){
int
M=data.length;
int
N=data[
0
].length;
float
data2[][]=
new
float
[M][N];
float
det_val=cal_det(data);
data2=ajoint(data);
for
(
int
i=
0
;i<M;i++){
for
(
int
j=
0
;j<N;j++){
data2[i][j]=data2[i][j]/det_val;
}
}
return
data2;
}
/*矩阵加法*/
private
static
float
[][] matrix_add(
float
[][] data1,
float
[][] data2){
int
M=data1.length;
int
N=data1[
0
].length;
float
data[][]=
new
float
[M][N];
for
(
int
i=
0
;i<M;i++){
for
(
int
j=
0
;j<N;j++){
data[i][j]=data1[i][j]+data2[i][j];
}
}
return
data;
}
/*矩阵相乘*/
private
static
float
[][] multiply(
float
[][] data1,
float
[][] data2){
int
M=data1.length;
int
N=data1[
0
].length;
int
K=data2[
0
].length;
float
[][] data3=
new
float
[M][K];
for
(
int
i=
0
;i<M;i++){
for
(
int
j=
0
;j<K;j++){
for
(
int
k=
0
;k<N;k++){
data3[i][j]+=data1[i][k]*data2[k][j];
}
}
}
return
data3;
}
/*输入参数为原矩阵和一个整数,该整数代表从对角线往上或往下平移的元素个数*/
private
static
float
[][] find_upper(
float
[][] data,
int
k){
int
length=data.length;
int
M=length-k;
float
[][] data2=
new
float
[length][length];
if
(k>=
0
){
for
(
int
i=
0
;i<M;i++){
for
(
int
j=k;j<length;j++){
data2[i][j]=data[i][j];
}
k+=
1
;
}
}
else
{
for
(
int
i=
0
;i<-k;i++){
for
(
int
j=
0
;j<length;j++){
data2[i][j]=data[i][j];
}
}
for
(
int
i=-k;i<length;i++){
for
(
int
j=i+k;j<length;j++){
data2[i][j]=data[i][j];
}
}
}
return
data2;
}
/*m*n矩阵与n维向量的乘法*/
private
static
float
[] multiply2(
float
[][] data1,
float
[] data2){
int
M=data1.length;
int
N=data1[
0
].length;
float
[] data3=
new
float
[M];
for
(
int
k=
0
;k<M;k++){
for
(
int
j=
0
;j<N;j++){
data3[k]+=data1[k][j]*data2[j];
}
}
return
data3;
}
/*向量加法*/
private
static
float
[] matrix_add2(
float
[] data1,
float
[] data2){
int
M=data1.length;
float
data[]=
new
float
[M];
for
(
int
i=
0
;i<M;i++){
data[i]=data1[i]+data2[i];
}
return
data;
}
/*求两向量之差的二范数(用于检验误差)*/
private
static
double
cal_error(
float
[] X1,
float
[] X2){
int
M=X1.length;
double
temp=
0
;
for
(
int
i=
0
;i<M;i++){
temp+=Math.pow((X1[i]-X2[i]),
2
);
}
temp=Math.sqrt(temp);
return
temp;
}
/*求矩阵的对角矩阵*/
private
static
float
[][] find_diagnal(
float
A[][]) {
int
m = A.length;
int
n = A[
0
].length;
float
B[][] =
new
float
[m][n];
for
(
int
i =
0
; i < m; i++) {
for
(
int
j =
0
; j < n; j++) {
if
(i == j) {
B[i][j] = A[i][j];
}
}
}
return
B;
}
/*高斯赛德尔迭代法*/
private
static
float
[] Gauss_Seidel_method(
float
[][] A,
float
[] B,
float
[] X){
float
D[][]=find_diagnal(A);
float
L[][]=find_lower(A, -
1
);
float
U[][]=find_upper(A,
1
);
float
temp1[][]=inv(matrix_add(D, L));
float
temp2[][]=opposite_matrix(temp1);
float
B0[][]=multiply(temp2, U);
float
F[]=multiply2(temp1, B);
return
matrix_add2(multiply2(B0, X), F);
}
public
static
void
main(String[] args) {
System.out.println(
"输入系数矩阵的行和列数:"
);
Scanner scan=
new
Scanner(System.in);
int
M=scan.nextInt();
System.out.println(
"输入方程组右侧方程值的维度:"
);
int
K=scan.nextInt();
if
(M!=K){
System.out.println(
"方程组个数和未知数个数不等!"
);
System.exit(
0
);
}
System.out.println(
"输入系数矩阵:"
);
float
[][] A=
new
float
[M][M];
for
(
int
i=
0
;i<M;i++){
for
(
int
j=
0
;j<M;j++){
A[i][j]=scan.nextFloat();
}
}
System.out.println(
"输入值向量"
);
float
[] B=
new
float
[M];
for
(
int
i=
0
;i<M;i++){
B[i]=scan.nextFloat();
}
System.out.println(
"输入初始迭代向量:"
);
float
[] X=
new
float
[M];
for
(
int
i=
0
;i<M;i++){
X[i]=scan.nextFloat();
}
System.out.println(
"输入误差限:"
);
float
er=scan.nextFloat();
float
temp[]=
new
float
[M];
while
(cal_error((temp=Gauss_Seidel_method(A, B, X)), X)>=er){
X=temp;
}
// while(cal_error((temp=Gauss_Seidel_method(A, B, X)), X)>=er){
// X=temp;
//
// }
X=temp;
System.out.println(
"高斯赛德尔计算得到的解向量为:"
);
for
(
int
i=
0
;i<M;i++){
System.out.println(X[i]+
" "
);
}
System.out.println();
}
}
原文:http://www.oschina.net/code/snippet_574827_39084
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/55657524
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
作者其他文章
评论(0)