torch bceloss nan
【摘要】
当数据为空时,loss会为nan
import torch a = torch.FloatTensor([])b = torch.FloatTensor([]) loss_fn = torch.nn.BCELoss() # reduce=False, size_average=False) if a.size(0)>0:x = loss_fn(a, b...
当数据为空时,loss会为nan
import torch
a = torch.FloatTensor([])
b = torch.FloatTensor([])
loss_fn = torch.nn.BCELoss() # reduce=False, size_average=False)
if a.size(0)>0:
x = loss_fn(a, b).item()
print(x)
这个loss为0
import torch
a = torch.FloatTensor([])
b = torch.FloatTensor([])
loss_fn = torch.nn.BCELoss(reduction='sum') # reduce=False, size_average=False)
# if a.size(0) > 0:
x = loss_fn(a, b)
print(x.item())
这个loss也为nan
import torch
a = torch.FloatTensor([]).cuda()
b = torch.FloatTensor([]).cuda()
loss_fn = torch.nn.BCEWithLogitsLoss().cuda() # reduce=False, size_average=False)
# if a.size(0) > 0:
x = loss_fn(a, b)
print(x.item())
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/84030569
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
作者其他文章
评论(0)