torch序列化
        【摘要】  同一张文件需要7ms左右: 
import timeimport torchimport torch.nn.functional as fif __name__ == '__main__': for i in range(200): x = torch.rand(1, 3, 1280, 720) # torch.set_num_threads(3)  torch.save(x...
    
    
    
    同一张文件需要7ms左右:
  
   - 
    
     
    
    
     
      import time
     
    
- 
    
     
    
    
     
      import torch
     
    
- 
    
     
    
    
     
      import torch.nn.functional as f
     
    
- 
    
     
    
    
     
      if __name__ == '__main__':
     
    
- 
    
     
    
    
      for i in range(200):
     
    
- 
    
     
    
    
     
       x = torch.rand(1, 3, 1280, 720)
     
    
- 
    
     
    
    
      # torch.set_num_threads(3)
     
    
- 
    
     
    
    
      
     
    
- 
    
     
    
    
     
       torch.save(x, 'd:/lib/'+str(0)+'.dat')
     
    
- 
    
     
    
    
     
       start = time.time()
     
    
- 
    
     
    
    
     
       aaa= torch.load('d:/lib/'+str(0)+'.dat')
     
    
- 
    
     
    
    
     
       print('time4', time.time() - start,aaa.size())
     
    
 
import time
 from distributed.protocol import serialize, deserialize
 import cv2
 import torch
 import torch.nn.functional as f
 if __name__ == '__main__':
 obj={'mat':torch.randn(10, 10),'name': '10','test':{'entry':1}}
 torch.save(obj,'test.dat' )
 for i in range(1000):
 img = cv2.imread('
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/84342788
        【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
            cloudbbs@huaweicloud.com
        
        
        
        
        - 点赞
- 收藏
- 关注作者
 
             
           
评论(0)