pytorch cat、stack、tranpose、permute、unsqeeze
【摘要】 总结:torch版cuda最快,cpu次之,python最慢。
import time
import torch
import numpy as np
import cv2
if __name__ == '__main__': path=r'D:\111.jpg' img_ = cv2.imread(path) start = time.time() for j in ra...
总结:torch版cuda最快,cpu次之,python最慢。
import time
import torch
import numpy as np
import cv2
if __name__ == '__main__': path=r'D:\111.jpg' img_ = cv2.imread(path) start = time.time() for j in range(500): #python中如果是除法,img=img/255.0 会很快;img1=img/255.0 就会比较慢,一张图片需要156ms img=img_/255.0 image = np.transpose(img, (2, 0, 1)) img2 = torch.from_numpy(image).float()#.unsqueeze(0) # time.sleep(0.007) print('time1',time.time()-start) img = cv2.imread(path) start = time.time() for j in range(500): # img_=img_/255.0 img2 = torch.from_numpy(img) img2=img2.cuda().float().div(255.0)#.unsqueeze(0) img2=img2.permute(2, 0, 1) # time.sleep(0.007) print('time2', time.time() - start)
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/85231128
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)