deep-high-resolution-net.pytorch
【摘要】
deep-high-resolution-net.pytorch
1070 100多ms
from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_function import argparseimp...
deep-high-resolution-net.pytorch
1070 100多ms
-
-
from __future__ import absolute_import
-
from __future__ import division
-
from __future__ import print_function
-
-
import argparse
-
import os
-
import pprint
-
-
import cv2
-
import torch
-
import torch.nn.parallel
-
import torch.backends.cudnn as cudnn
-
import torch.optim
-
import torch.utils.data
-
import torch.utils.data.distributed
-
import torchvision.transforms as transforms
-
from easydict import EasyDict as edict
-
import _init_paths
-
from config import cfg
-
from config import update_config
-
from core.loss import JointsMSELoss
-
from core.function import validate
-
from utils.utils import create_logger
-
-
from utils.transforms import flip_back
-
import dataset
-
import models
-
-
-
def parse_args():
-
parser = argparse.ArgumentParser(description='Train keypoints network')
-
# general
-
parser.add_argument('--cfg',help='experiment configure file name',req
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/100574432
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)