pytorch 数据增强
【摘要】 https://github.com/miha-skalic/convolutedPredictions_Cdiscount/blob/b0d0fc8ae99e2c3fb8d06eaac19d0e3bcd951bce/heng/code/solution-submit-1/dataset/transform.py
from common import * ## for de...
-
from common import *
-
-
## for debug
-
def dummy_transform(img,text='dummy_transform'):
-
print ('\t\t%s',text)
-
return img
-
-
## custom data transform -----------------------------------
-
## https://github.com/pytorch/vision/blob/master/test/preprocess-bench.py
-
## http://pytorch-zh.readthedocs.io/en/latest/torchvision/models.html
-
## All pre-trained models expect input images normalized in the same way,
-
## i.e. mini-batches of 3-channel RGB images of shape (3 x H x W),
-
## where H and W are expected to be atleast 224. The images have to be
-
## loaded in to a range of [0, 1] a
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/101315249
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)