log_sum_exp
【摘要】 log_sum_exp
scipy.misc.logsumexp函数的输入参数有(a, axis=None, b=None, keepdims=False, return_sign=False),具体配置可参见这里,返回的值是np.log(np.sum(np.exp(a)))。 这里需要强调的是使用该函数的场景: 一般来说,该函数主要用于非常小的数值的运算(比如蒙特卡洛取样...
log_sum_exp
scipy.misc.logsumexp函数的输入参数有(a, axis=None, b=None, keepdims=False, return_sign=False),具体配置可参见这里,返回的值是np.log(np.sum(np.exp(a)))。
这里需要强调的是使用该函数的场景:
一般来说,该函数主要用于非常小的数值的运算(比如蒙特卡洛取样样本)。在这种情况下,将数据保持log处理是必须的。所以这时你如果想将数组中的数据累加求和就需要这样计算log(sum(exp(a))),但这样做就会产生一些精确性的问题,而这个问题scipy.misc.logsumexp是引进解决了的,所以进行小数据求和可以直接使用scipy.misc.logsumexp函数。
def log_sum_exp(x):
"""Utility function for computing log_sum_exp while determining
This will be used to determine unaveraged confidence loss across
all examples in a batch.
Args:
x (Variable(tensor)): conf_preds from conf layers
"""
x_max = x.data.max()
return torch.log(torch.sum(torch.exp(x-x_max), 1, keepdim=True)) + x_max
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/102632367
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)