pytorch cross_entropy

举报
风吹稻花香 发表于 2021/06/05 00:05:22 2021/06/05
【摘要】   在使用pytorch实现textcnn进行文本分类时,参考了别人的代码(keras),在使用torch.nn.functional.cross_entropy纠结了很久,最后发现的下面的文章: https://www.cnblogs.com/marsggbo/p/10401215.html 总结了以下的注意点: 在网络的forward最后输出时不用接so...

 

在使用pytorch实现textcnn进行文本分类时,参考了别人的代码(keras),在使用torch.nn.functional.cross_entropy纠结了很久,最后发现的下面的文章:

https://www.cnblogs.com/marsggbo/p/10401215.html

总结了以下的注意点:

在网络的forward最后输出时不用接softmax,直接全连接输出n类即可。
不用对标签进行one_hot编码,因为torch.nn.functional.cross_entropy里面nll_loss(negative log likelihood loss)实现的类似的过程,也就是得到对应的index。但是class = [1, 2, 3]时要处理成从0开始[0, 1, 2]
 

文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/jacke121/article/details/103243171

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。