torch打印网络结构
【摘要】
import torch from Pelee_network_v2 import PeleeNet def make_dot(var, params=None): """ Produces Graphviz representation of PyTorch autograd graph Blue nodes are the Variables that ...
-
import torch
-
-
from Pelee_network_v2 import PeleeNet
-
-
-
def make_dot(var, params=None):
-
""" Produces Graphviz representation of PyTorch autograd graph
-
Blue nodes are the Variables that require grad, orange are Tensors
-
saved for backward in torch.autograd.Function
-
Args:
-
var: output Variable
-
params: dict of (name, Variable) to add names to node that
-
require grad (TODO: make optional)
-
"""
-
if params is not None:
-
assert isinstance(params.values()[0], Variable)
-
param_map = {id(v): k for k, v in params.items()}
-
-
node_attr = dict(style='filled',
-
shape='box',
-
align='left',
-
fontsize='12',
-
ranksep='0.1',
-
height='0.2')
-
dot = Digraph(node_attr=node_attr, graph_attr
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/104309744
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)