vovnet 测试
【摘要】 vovnet39, 1070 640*640 batch 1 15ms
自己改了参数:
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
__all__ = ['VoVNet',...
vovnet39, 1070 640*640 batch 1 15ms
自己改了参数:
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
__all__ = ['VoVNet', 'vovnet27_slim', 'vovnet39', 'vovnet57'] def conv3x3(in_channels, out_channels, module_name, postfix, stride=1, groups=1, kernel_size=3, padding=1): """3x3 convolution with padding""" return [ ('{}_{}/conv'.format(module_name, postfix), nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False)), ('{}_{}/norm'.format(module_name, postfix), nn.BatchNorm2d(out_channels)), (文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/104552883
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)