增大感受野
【摘要】
self.stage1 = nn.Sequential( conv_bn(3, 64, 2, leaky = 0.1), # 3 conv_dw(64, 96, 1), # 7 conv_dw(96, 96, 2), # 11 conv_dw(96, 128, 1), # 19 conv_dw(128, 128, 2), # 27 conv_dw(...
-
self.stage1 = nn.Sequential(
-
conv_bn(3, 64, 2, leaky = 0.1), # 3
-
conv_dw(64, 96, 1), # 7
-
conv_dw(96, 96, 2), # 11
-
conv_dw(96, 128, 1), # 19
-
conv_dw(128, 128, 2), # 27
-
conv_dw(128, 144, 1), # 43
-
)
-
# import mish
-
def conv_bn(inp, oup, stride = 1, leaky = 0):
-
return nn.Sequential(
-
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
-
nn.BatchNorm2d(oup),
-
# mish.Mish()
-
nn.ReLU6()
-
)
1.
-
x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
-
-
self.conv2 = nn.Conv2d(96, 96, kernel_size=3, stride=2, padding=1)
-
-
self.conv4_0 = nn.Conv2d(128, 128, kernel_size=5, stride=2, padding=2)
增大感受野的方法
主要的方法是从增加网络的深度出发(这也
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/104764646
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)