exp_vml_cpu not implemented for 'Long'
【摘要】
exp_vml_cpu not implemented for 'Long'
from torch import nn if __name__ == '__main__': import torch bce_loss = nn.BCEWithLogitsLoss(reduction='sum') labels=torch.Tensor(...
exp_vml_cpu not implemented for 'Long'
from torch import nn
if __name__ == '__main__':
import torch
bce_loss = nn.BCEWithLogitsLoss(reduction='sum')
labels=torch.Tensor([1,2])
input_tensor = torch.tensor([[1, 2, 3],
[4, 5,6]])
index_num = torch.arange(0, labels.size(0))
value, index = torch.max(input_tensor, dim=1) # 按列SoftMax,列和为1
# _, index = torch.topk(thetas, 1, dim=1, largest=True, sorted=True, out=None)
select_pos = index != labels.long()
pos_label = torch.ones((input_tensor[index_num, labels.long()][select_pos]).size(0))
data=input_tensor[index_num, labels.long()][select_pos]
pos_loss = bce_loss(data, pos_label)
print(pos_loss)
data需要是float32类型的,
pos_loss = bce_loss(data.float(), pos_label)
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/104845214
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)