aspp
【摘要】 用法:pc上20ms
aspp = ASPP(320, [3, 6, 9]) input = torch.randn(2, 320, 10, 10) # torch.onnx.export(pelee_net, input, "pelee_net.onnx", verbose=True) for i in range(10): start=time.time()...
用法:pc上20ms
-
aspp = ASPP(320, [3, 6, 9])
-
-
-
input = torch.randn(2, 320, 10, 10)
-
-
# torch.onnx.export(pelee_net, input, "pelee_net.onnx", verbose=True)
-
-
-
for i in range(10):
-
start=time.time()
-
-
# x, *shortcuts = net(input)
-
-
# print(time.time()-start,x.shape)
-
start = time.time()
-
x=aspp(input)
-
print(2,time.time() - start, x.shape)
-
-
from torch.nn import functional as F
-
-
class ASPPPooling(nn.Sequential):
-
def __init__(self, in_channels, out_channels):
-
super(ASPPPooling, self).__init__(
-
nn.AdaptiveAvgPool2d(1),
-
nn.Conv2d(in_channels, out_channels, 1, bias=False),
-
nn.BatchNorm2d(out_channels),
-
nn.ReLU())
-
-
def forward(self, x):
-
size = x.shape[-2:]
-
for mod in self:
-
x = mod(x)
-
return F.interpola
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/111306323
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)