模型大小 与参数量计算

举报
风吹稻花香 发表于 2021/06/04 23:16:02 2021/06/04
【摘要】   1.model size 就是模型的大小,我们一般使用参数量parameter来衡量,注意,它的单位是个。但是由于很多模型参数量太大,所以一般取一个更方便的单位:兆(M) 来衡量。比如ResNet-152的参数量可以达到60 million = 0.0006M。有些时候,model size在实际计算时除了包含参数量以外,还包括网络架构信息和优化器...

 

1.model size

就是模型的大小,我们一般使用参数量parameter来衡量,注意,它的单位是。但是由于很多模型参数量太大,所以一般取一个更方便的单位:兆(M) 来衡量。比如ResNet-152的参数量可以达到60 million = 0.0006M。有些时候,model size在实际计算时除了包含参数量以外,还包括网络架构信息和优化器信息等。比如存储一个一般的CNN模型(ImageNet训练)需要大于300MB。

M和MB的换算关系:

比如说我有一个模型参数量是1M,在一般的深度学习框架中(比如说PyTorch),一般是32位存储。32位存储的意思就是1个参数用32个bit来存储。那么这个拥有1M参数量的模型所需要的存储空间的大小即为:1M * 32 bit = 32Mb = 4MB。因为1 Byte = 8 bit。现在的quantization技术就是减少参数量所占的位数:比如我用8位存储,那么:所需要的存储空间的大小即为:1M * 8 bit = 8Mb = 1MB。

2.参数量计算方法

卷积层参数计算方法:

 

文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/jacke121/article/details/117003454

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。