模型大小 与参数量计算
【摘要】
1.model size
就是模型的大小,我们一般使用参数量parameter来衡量,注意,它的单位是个。但是由于很多模型参数量太大,所以一般取一个更方便的单位:兆(M) 来衡量。比如ResNet-152的参数量可以达到60 million = 0.0006M。有些时候,model size在实际计算时除了包含参数量以外,还包括网络架构信息和优化器...
1.model size
就是模型的大小,我们一般使用参数量parameter来衡量,注意,它的单位是个。但是由于很多模型参数量太大,所以一般取一个更方便的单位:兆(M) 来衡量。比如ResNet-152的参数量可以达到60 million = 0.0006M。有些时候,model size在实际计算时除了包含参数量以外,还包括网络架构信息和优化器信息等。比如存储一个一般的CNN模型(ImageNet训练)需要大于300MB。
M和MB的换算关系:
比如说我有一个模型参数量是1M,在一般的深度学习框架中(比如说PyTorch),一般是32位存储。32位存储的意思就是1个参数用32个bit来存储。那么这个拥有1M参数量的模型所需要的存储空间的大小即为:1M * 32 bit = 32Mb = 4MB。因为1 Byte = 8 bit。现在的quantization技术就是减少参数量所占的位数:比如我用8位存储,那么:所需要的存储空间的大小即为:1M * 8 bit = 8Mb = 1MB。
2.参数量计算方法
卷积层参数计算方法:
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/117003454
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)