cspnet测试
【摘要】 1060 416 batch_size 6
import osimport time import torchimport torch.nn as nnimport torchvision.transforms as transformsimport torch.optim as optim def conv3x3(in_planes, out_plane...
1060 416 batch_size 6
-
import os
-
import time
-
-
import torch
-
import torch.nn as nn
-
import torchvision.transforms as transforms
-
import torch.optim as optim
-
-
-
def conv3x3(in_planes, out_planes, stride=1, dilation=1):
-
"""3x3 convolution with padding"""
-
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, bias=False,
-
dilation=dilation)
-
-
-
def conv1x1(in_planes, out_planes):
-
"""1x1 convolution"""
-
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, bias=False)
-
-
-
class Linear(nn.Module):
-
def __init__(self):
-
super().__init__()
-
-
def forward(self, x):
-
return x
-
-
-
class BasicBlock(nn.Module):
-
expansion = 1
-
tran_expansion = 1
-
-
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilatio
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/117236736
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)