DataFrame(12):数据转换——apply(),applymap()函数的使用
【摘要】 1、apply()函数
1)apply()函数作用
① apply()函数作用于Series
和Series的map()方法作用是一样的,依次取出Series中的每一个元素作为参数,传递给function函数,进行一次转换。
② apply()函数作用于DataFrame
依次取出DataFrame中的每一个元素作为参数,传递给function函数,进...
1、apply()函数
1)apply()函数作用
① apply()函数作用于Series
和Series的map()方法作用是一样的,依次取出Series中的每一个元素作为参数,传递给function函数,进行一次转换。
② apply()函数作用于DataFrame
依次取出DataFrame中的每一个元素作为参数,传递给function函数,进行转换。注意:DataFrame中的每一个元素是一个Series。
③ 原始数据链接如下
2)apply()函数作用于Series
① 案例一:1代表男,0代表女,完成如下替换
df = pd.read_excel(r"C:\Users\黄伟\Desktop\test.xlsx",sheet_name=3)
display(df)
def func(x): if x == "男" or x == "女": return x elif x == 1: return "男" else: return "女"
df["性别"] = df["性别"].apply(func)
display(df)
结果如下:
② 案例二:将身高统一替换为“cm”单位
df = pd.read_excel(r"C:\Users\黄伟\Desktop\test.xlsx",sheet_name=3)
display(df)
def func(x): if x.endswith("cm"): return x else: v = float(x.replace("m","")) return str(v*100)+"cm"
df["身高"] = df["身高"].apply(func)
display(df)
结果如下:
③ 案例三:提取日期中的年、月、日
df = pd.read_excel(r"C:\Users\黄伟\Desktop\test1.xlsx")
display(df)
# 注意:这里的日期列,是时间格式
df["year"] = df["日期"].apply(lambda x:x.year)
df["month"] = df["日期"].apply(lambda x:x.month)
df["day"] = df["日期"].apply(lambda x:x.day)
display(df)
结果如下:
3)apply函数作用于DataFrame
① 案例一:求出某些列的均值
df = pd.read_excel(r"C:\Users\黄伟\Desktop\test.xlsx",sheet_name=2)
display(df)
df1 = df[["语文","物理"]]
display(df1)
display(type(df1))
df[["语文","物理"]].apply(lambda x:x.mean())
结果如下:
② 打印df中列或行的数据类型
df = pd.read_excel(r"C:\Users\黄伟\Desktop\test.xlsx",sheet_name=2)
display(df)
x = df.apply(lambda x:print(type(x)),axis=0)
print("-------------------------------------")
y = df.apply(lambda x:print(type(x)),axis=1)
结果如下:
2、applymap()函数
1)applymap()函数作用
① applymap()函数只能作用于DataFrame
依次取出DataFrame中的每一个具体的元素作为参数,传递给function函数,进行转换。
2)案例说明
df = pd.read_excel(r"C:\Users\黄伟\Desktop\test.xlsx",sheet_name=2)
display(df)
df[['语文', '数学', '英语', '物理', '化学', '生物']].applymap(lambda x:x+100)
结果如下:
文章来源: blog.csdn.net,作者:数据分析与统计学之美,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/weixin_41261833/article/details/104217226
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
作者其他文章
评论(0)