【论文】强化学习必读经典论文 | 如何学习强化学习 | 强化学习入门

举报
王博Kings 发表于 2020/12/29 23:56:07 2020/12/29
【摘要】 Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.Gerald Tesauro. Temporal difference learning and TD-gammon. Communications of the ACM, 38(3):5...
  1. Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.
  2. Gerald Tesauro. Temporal difference learning and TD-gammon. Communications of the ACM, 38(3):58–68, 1995.
  3. Kaelbling, Leslie P., Littman, Michael L., Moore, Andrew W. Reinforcement Learning: A Survey. Journal of Artificial Intelligence Research. 4: 237-285, 1996.
  4. John N Tsitsiklis, B Van Roy. An analysis of temporal-difference learning with function approximation. IEEE Transactions on Automatic Control, 1997.
  5. Richard Sutton. Learning to predict by the methods of temporal differences. Machine Learning. 3 (1): 9-44.1988.
  6. Richard S Sutton, David A Mcallester, Satinder P Singh, Yishay Mansour. Policy Gradient methods for reinforcement learning with function approximation. neural information processing systems, 2000.
  7. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou. Playing Atari with Deep Reinforcement Learning. NIPS 2013.
  8. Mnih, Volodymyr, et al. Human-level control through deep reinforcement learning. Nature. 518 (7540): 529-533, 2015.
  9. Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa. Continuous Control With Deep Reinforcement Learning. international conference on learning representations, 2016.
  10. Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim Harley, Timothy P Lill. Asynchronous methods for deep reinforcement learning. international conference on machine learning, 2016.
  11. Yuxi Li. Deep Reinforcement Learning: An Overview. 2017.
  12. David Silver, et al. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature, 2016.
  13. David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez. AlphaZero: Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm. arXiv: Artificial Intelligence, 2017.

 

欢迎留言补充 

文章来源: kings.blog.csdn.net,作者:人工智能博士,版权归原作者所有,如需转载,请联系作者。

原文链接:kings.blog.csdn.net/article/details/93721945

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。