【画图】基于Python的神经网络可视化工具
【摘要】 项目链接:
https://github.com/Prodicode/ann-visualizer?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
A python library for visualizing Artificial Neural Networks (ANN)
如何安装
Fro...
项目链接:
https://github.com/Prodicode/ann-visualizer?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
A python library for visualizing Artificial Neural Networks (ANN)
如何安装
From Github
- Download the
ann_visualizer
folder from the github repository. - Place the
ann_visualizer
folder in the same directory as your main python script.
From pip
Use the following command:
pip3 install ann_visualizer
Make sure you have graphviz installed. Install it using:
sudo apt-get install graphviz && pip3 install graphviz
人工神经网络绘图示例
import keras;
from keras.models import Sequential;
from keras.layers import Dense;
network = Sequential();
#Hidden Layer#1
network.add(Dense(units=6,
activation='relu',
kernel_initializer='uniform',
input_dim=11));
#Hidden Layer#2
network.add(Dense(units=6,
activation='relu',
kernel_initializer='uniform'));
#Exit Layer
network.add(Dense(units=1,
activation='sigmoid',
kernel_initializer='uniform'));
from ann_visualizer.visualize import ann_viz;
ann_viz(network, title="");
卷积神经网络绘图示例
import keras;
from keras.models import Sequential;
from keras.layers import Dense;
from ann_visualizer.visualize import ann_viz
model = build_cnn_model()
ann_viz(model, title="")
def build_cnn_model():
model = keras.models.Sequential()
model.add(
Conv2D(
32, (3, 3),
padding="same",
input_shape=(32, 32, 3),
activation="relu"))
model.add(Dropout(0.2))
model.add(
Conv2D(
32, (3, 3),
padding="same",
input_shape=(32, 32, 3),
activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(
Conv2D(
64, (3, 3),
padding="same",
input_shape=(32, 32, 3),
activation="relu"))
model.add(Dropout(0.2))
model.add(
Conv2D(
64, (3, 3),
padding="same",
input_shape=(32, 32, 3),
activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(512, activation="relu"))
model.add(Dropout(0.2))
model.add(Dense(10, activation="softmax"))
return model
文章来源: kings.blog.csdn.net,作者:人工智能博士,版权归原作者所有,如需转载,请联系作者。
原文链接:kings.blog.csdn.net/article/details/89891005
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
作者其他文章
评论(0)