【画图】基于Python的神经网络可视化工具

举报
王博Kings 发表于 2020/12/29 22:51:37 2020/12/29
4.5k+ 0 0
【摘要】 项目链接: https://github.com/Prodicode/ann-visualizer?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more A python library for visualizing Artificial Neural Networks (ANN) 如何安装 Fro...

项目链接:

https://github.com/Prodicode/ann-visualizer?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

A python library for visualizing Artificial Neural Networks (ANN)

如何安装

From Github

  1. Download the ann_visualizer folder from the github repository.
  2. Place the ann_visualizer folder in the same directory as your main python script.

From pip

Use the following command:

pip3 install ann_visualizer
 

Make sure you have graphviz installed. Install it using:

sudo apt-get install graphviz && pip3 install graphviz
 

人工神经网络绘图示例


      import keras;
      from keras.models import Sequential;
      from keras.layers import Dense;
      network = Sequential();
      #Hidden Layer#1
      network.add(Dense(units=6,
       activation='relu',
       kernel_initializer='uniform',
       input_dim=11));
      #Hidden Layer#2
      network.add(Dense(units=6,
       activation='relu',
       kernel_initializer='uniform'));
      #Exit Layer
      network.add(Dense(units=1,
       activation='sigmoid',
       kernel_initializer='uniform'));
      from ann_visualizer.visualize import ann_viz;
      ann_viz(network, title="");
  
 

卷积神经网络绘图示例


      import keras;
      from keras.models import Sequential;
      from keras.layers import Dense;
      from ann_visualizer.visualize import ann_viz
      model = build_cnn_model()
      ann_viz(model, title="")
      def build_cnn_model():
        model = keras.models.Sequential()
        model.add(
       Conv2D(
      32, (3, 3),
       padding="same",
       input_shape=(32, 32, 3),
       activation="relu"))
        model.add(Dropout(0.2))
        model.add(
       Conv2D(
      32, (3, 3),
       padding="same",
       input_shape=(32, 32, 3),
       activation="relu"))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.2))
        model.add(
       Conv2D(
      64, (3, 3),
       padding="same",
       input_shape=(32, 32, 3),
       activation="relu"))
        model.add(Dropout(0.2))
        model.add(
       Conv2D(
      64, (3, 3),
       padding="same",
       input_shape=(32, 32, 3),
       activation="relu"))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.2))
        model.add(Flatten())
        model.add(Dense(512, activation="relu"))
        model.add(Dropout(0.2))
        model.add(Dense(10, activation="softmax"))
       return model
  
 

 

文章来源: kings.blog.csdn.net,作者:人工智能博士,版权归原作者所有,如需转载,请联系作者。

原文链接:kings.blog.csdn.net/article/details/89891005

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

作者其他文章

评论(0

抱歉,系统识别当前为高风险访问,暂不支持该操作

    全部回复

    上滑加载中

    设置昵称

    在此一键设置昵称,即可参与社区互动!

    *长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

    *长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。