《AI安全之对抗样本入门》—1.6 本章小结

举报
华章计算机 发表于 2019/06/17 17:41:51 2019/06/17
【摘要】 本节书摘来自华章计算机《AI安全之对抗样本入门》一书中的第1章,第1.6节,作者是兜哥。

1.6 本章小结

本章介绍了深度学习的训练过程,并结合一个实际的例子介绍了数据预处理、定义网络结构、损失函数、反向传递与优化器的知识,重点介绍了链式法则与梯度的使用。本章最后还结合具体例子介绍了几个常见的衡量指标,包括混淆矩阵、准确率、召回率、准确度、F1-Score、ROC和AUC。另外本章还介绍了博采众家之长的集成学习,主要介绍了Boosting算法和Bagging算法。


【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。