双目 机器视觉-- 测距

举报
一颗小树x 发表于 2020/12/02 22:47:41 2020/12/02
【摘要】 目录 1.双目图片--测距: 流程说明: 2. 实时采集数据,进行测距 首先进行双目定标,获取双目摄像头内部的参数后,进行测距。 注意:双目定标的效果会影响测距的精准度,建议大家在做双目定标时,做好一些(尽量让误差小)   本次的双目视觉测距,基于BM算法。 1.双目图片--测距: 效果:   本人通过测试,误差是1cm.   其中参数:B...

目录

1.双目图片--测距:

流程说明:

2. 实时采集数据,进行测距


首先进行双目定标,获取双目摄像头内部的参数后,进行测距。

注意:双目定标的效果会影响测距的精准度,建议大家在做双目定标时,做好一些(尽量让误差小)

 

本次的双目视觉测距,基于BM算法。

1.双目图片--测距:

效果:

 

本人通过测试,误差是1cm.

 

其中参数:BlockSize、UniquenessRatio、NumDisparities 根据实际情况来调整;

 

源代码:


      /* 双目测距 */
      #include <opencv2/opencv.hpp> 
      #include <iostream> 
      #include <math.h> 
      using namespace std;
      using namespace cv;
      const int imageWidth = 640; //摄像头的分辨率 
      const int imageHeight = 360;
      Vec3f  point3;
      float d;
      Size imageSize = Size(imageWidth, imageHeight);
      Mat rgbImageL, grayImageL;
      Mat rgbImageR, grayImageR;
      Mat rectifyImageL, rectifyImageR;
      Rect validROIL;//图像校正之后,会对图像进行裁剪,这里的validROI就是指裁剪之后的区域 
      Rect validROIR;
      Mat mapLx, mapLy, mapRx, mapRy; //映射表 
      Mat Rl, Rr, Pl, Pr, Q; //校正旋转矩阵R,投影矩阵P 重投影矩阵Q
      Mat xyz; //三维坐标
      Point origin; //鼠标按下的起始点
      Rect selection; //定义矩形选框
      bool selectObject = false; //是否选择对象
      int blockSize = 0, uniquenessRatio = 0, numDisparities = 0;
      Ptr<StereoBM> bm = StereoBM::create(16, 9);
      /*事先标定好的左相机的内参矩阵
      fx 0 cx
      0 fy cy
      0 0 1
      */
      Mat cameraMatrixL = (Mat_<double>(3, 3) << 418.523322187048, -1.26842201390676, 343.908870120890,
     	0, 421.222568242056, 235.466208987968,
     	0, 0, 1);
      //获得的畸变参数
      /*418.523322187048 0 0
      -1.26842201390676 421.222568242056 0
      344.758267538961 243.318992284899 1 */ //2
      Mat distCoeffL = (Mat_<double>(5, 1) << 0.006636837611004, 0.050240447649195, 0.006681263320267, 0.003130367429418, 0);
      //[0.006636837611004,0.050240447649195] [0.006681263320267,0.003130367429418]
      /*事先标定好的右相机的内参矩阵
      fx 0 cx
      0 fy cy
      0 0 1
      */
      Mat cameraMatrixR = (Mat_<double>(3, 3) << 417.417985082506, 0.498638151824367, 309.903372309072,
     	0, 419.795432389420, 230.6,
     	0, 0, 1);
      /*
      417.417985082506 0 0
      0.498638151824367 419.795432389420 0
      309.903372309072 236.256106972796 1
      */ //2
      Mat distCoeffR = (Mat_<double>(5, 1) << -0.038407383078874, 0.236392800301615, 0.004121779274885, 0.002296129959664, 0);
      //[-0.038407383078874,0.236392800301615] [0.004121779274885,0.002296129959664]
      Mat T = (Mat_<double>(3, 1) << -1.210187345641146e+02, 0.519235426836325, -0.425535566316217);//T平移向量
      //[-1.210187345641146e+02,0.519235426836325,-0.425535566316217]
      //对应Matlab所得T参数
      //Mat rec = (Mat_<double>(3, 1) << -0.00306, -0.03207, 0.00206);//rec旋转向量,对应matlab om参数 我 
      Mat rec = (Mat_<double>(3, 3) << 0.999341122700880, -0.00206388651740061, 0.0362361815232777,
     	0.000660748031451783, 0.999250989651683, 0.0386913826603732,
     	-0.0362888948713456, -0.0386419468010579, 0.998593969567432); //rec旋转向量,对应matlab om参数 我 
      /* 0.999341122700880 0.000660748031451783 -0.0362888948713456
      -0.00206388651740061 0.999250989651683 -0.0386419468010579
      0.0362361815232777 0.0386913826603732 0.998593969567432 */
      //Mat T = (Mat_<double>(3, 1) << -48.4, 0.241, -0.0344);//T平移向量
      //[-1.210187345641146e+02,0.519235426836325,-0.425535566316217]
      //对应Matlab所得T参数
      Mat R;//R 旋转矩阵
     	  /*****立体匹配*****/
      void stereo_match(int, void*)
      {
      	bm->setBlockSize(2 * blockSize + 5); //SAD窗口大小,5~21之间为宜
      	bm->setROI1(validROIL);
      	bm->setROI2(validROIR);
      	bm->setPreFilterCap(31);
      	bm->setMinDisparity(0);  //最小视差,默认值为0, 可以是负值,int型
      	bm->setNumDisparities(numDisparities * 16 + 16);//视差窗口,即最大视差值与最小视差值之差,窗口大小必须是16的整数倍,int型
      	bm->setTextureThreshold(10);
      	bm->setUniquenessRatio(uniquenessRatio);//uniquenessRatio主要可以防止误匹配
      	bm->setSpeckleWindowSize(100);
      	bm->setSpeckleRange(32);
      	bm->setDisp12MaxDiff(-1);
      	Mat disp, disp8;
      	bm->compute(rectifyImageL, rectifyImageR, disp);//输入图像必须为灰度图
      	disp.convertTo(disp8, CV_8U, 255 / ((numDisparities * 16 + 16)*16.));//计算出的视差是CV_16S格式
      	reprojectImageTo3D(disp, xyz, Q, true); //在实际求距离时,ReprojectTo3D出来的X / W, Y / W, Z / W都要乘以16(也就是W除以16),才能得到正确的三维坐标信息。
      	xyz = xyz * 16;
      	imshow("disparity", disp8);
      }
      /*****描述:鼠标操作回调*****/
      static void onMouse(int event, int x, int y, int, void*)
      {
     	if (selectObject)
      	{
      		selection.x = MIN(x, origin.x);
      		selection.y = MIN(y, origin.y);
      		selection.width = std::abs(x - origin.x);
      		selection.height = std::abs(y - origin.y);
      	}
     	switch (event)
      	{
     	case EVENT_LBUTTONDOWN:   //鼠标左按钮按下的事件
      		origin = Point(x, y);
      		selection = Rect(x, y, 0, 0);
      		selectObject = true;
     		//cout << origin << "in world coordinate is: " << xyz.at<Vec3f>(origin) << endl;
       point3 = xyz.at<Vec3f>(origin);
      		point3[0];
     		//cout << "point3[0]:" << point3[0] << "point3[1]:" << point3[1] << "point3[2]:" << point3[2]<<endl;
     		cout << "世界坐标:" << endl;
     		cout << "x: " << point3[0] << " y: " << point3[1] << " z: " << point3[2] << endl;
      		 d = point3[0] * point3[0]+ point3[1] * point3[1]+ point3[2] * point3[2];
      		 d = sqrt(d);   //mm
     		// cout << "距离是:" << d << "mm" << endl;
      		 d = d / 10.0;   //cm
      cout << "距离是:" << d << "cm" << endl;
     		// d = d/1000.0; //m
     		// cout << "距离是:" << d << "m" << endl;
     		break;
     	case EVENT_LBUTTONUP: //鼠标左按钮释放的事件
      		selectObject = false;
     		if (selection.width > 0 && selection.height > 0)
     			break;
      	}
      }
      /*****主函数*****/
      int main()
      {
     	/*
       立体校正
       */
      	Rodrigues(rec, R); //Rodrigues变换
      	stereoRectify(cameraMatrixL, distCoeffL, cameraMatrixR, distCoeffR, imageSize, R, T, Rl, Rr, Pl, Pr, Q, CALIB_ZERO_DISPARITY,
     		0, imageSize, &validROIL, &validROIR);
      	initUndistortRectifyMap(cameraMatrixL, distCoeffL, Rl, Pr, imageSize, CV_32FC1, mapLx, mapLy);
      	initUndistortRectifyMap(cameraMatrixR, distCoeffR, Rr, Pr, imageSize, CV_32FC1, mapRx, mapRy);
     	/*
       读取图片
       */
      	rgbImageL = imread("image_left_1.jpg", CV_LOAD_IMAGE_COLOR);
      	cvtColor(rgbImageL, grayImageL, CV_BGR2GRAY);
      	rgbImageR = imread("image_right_1.jpg", CV_LOAD_IMAGE_COLOR);
      	cvtColor(rgbImageR, grayImageR, CV_BGR2GRAY);
      	imshow("ImageL Before Rectify", grayImageL);
      	imshow("ImageR Before Rectify", grayImageR);
     	/*
       经过remap之后,左右相机的图像已经共面并且行对准了
       */
      	remap(grayImageL, rectifyImageL, mapLx, mapLy, INTER_LINEAR);
      	remap(grayImageR, rectifyImageR, mapRx, mapRy, INTER_LINEAR);
     	/*
       把校正结果显示出来
       */
      	Mat rgbRectifyImageL, rgbRectifyImageR;
      	cvtColor(rectifyImageL, rgbRectifyImageL, CV_GRAY2BGR);  //伪彩色图
      	cvtColor(rectifyImageR, rgbRectifyImageR, CV_GRAY2BGR);
     	//单独显示
     	//rectangle(rgbRectifyImageL, validROIL, Scalar(0, 0, 255), 3, 8);
     	//rectangle(rgbRectifyImageR, validROIR, Scalar(0, 0, 255), 3, 8);
      	imshow("ImageL After Rectify", rgbRectifyImageL);
      	imshow("ImageR After Rectify", rgbRectifyImageR);
     	//显示在同一张图上
      	Mat canvas;
     	double sf;
     	int w, h;
      	sf = 600. / MAX(imageSize.width, imageSize.height);
      	w = cvRound(imageSize.width * sf);
      	h = cvRound(imageSize.height * sf);
      	canvas.create(h, w * 2, CV_8UC3);   //注意通道
      //左图像画到画布上
      	Mat canvasPart = canvas(Rect(w * 0, 0, w, h)); //得到画布的一部分 
      	resize(rgbRectifyImageL, canvasPart, canvasPart.size(), 0, 0, INTER_AREA); //把图像缩放到跟canvasPart一样大小 
     	Rect vroiL(cvRound(validROIL.x*sf), cvRound(validROIL.y*sf), //获得被截取的区域 
      		cvRound(validROIL.width*sf), cvRound(validROIL.height*sf));
     	//rectangle(canvasPart, vroiL, Scalar(0, 0, 255), 3, 8); //画上一个矩形 
     	cout << "Painted ImageL" << endl;
     	//右图像画到画布上
      	canvasPart = canvas(Rect(w, 0, w, h)); //获得画布的另一部分 
      	resize(rgbRectifyImageR, canvasPart, canvasPart.size(), 0, 0, INTER_LINEAR);
     	Rect vroiR(cvRound(validROIR.x * sf), cvRound(validROIR.y*sf),
       cvRound(validROIR.width * sf), cvRound(validROIR.height * sf));
     	//rectangle(canvasPart, vroiR, Scalar(0, 0, 255), 3, 8);
     	cout << "Painted ImageR" << endl;
     	//画上对应的线条
     	for (int i = 0; i < canvas.rows; i += 16)
      		line(canvas, Point(0, i), Point(canvas.cols, i), Scalar(0, 255, 0), 1, 8);
      	imshow("rectified", canvas);
     	/*
       立体匹配
       */
      	namedWindow("disparity", CV_WINDOW_AUTOSIZE);
     	// 创建SAD窗口 Trackbar
      	createTrackbar("BlockSize:\n", "disparity", &blockSize, 8, stereo_match);
     	// 创建视差唯一性百分比窗口 Trackbar
      	createTrackbar("UniquenessRatio:\n", "disparity", &uniquenessRatio, 50, stereo_match);
     	// 创建视差窗口 Trackbar
      	createTrackbar("NumDisparities:\n", "disparity", &numDisparities, 16, stereo_match);
     	//鼠标响应函数setMouseCallback(窗口名称, 鼠标回调函数, 传给回调函数的参数,一般取0)
      	setMouseCallback("disparity", onMouse, 0);
      	stereo_match(0, 0);
      	waitKey(0);
     	return 0;
      }
  
 

 

流程说明:

先采集左右摄像头的图片,然后,修改一下指定的图片,可以进行测距。

里面有双目摄像头的参数,具体需要自己定标和矫正后,然后,填入。

双目定标可以参考:双目视觉 定标+矫正 (基于MATLAB)

双目数据转化可以参考:双目视觉 三维重建、测距 ---准备工作(数据转化)

 

详细讲解摄像头参数:

1)Mat cameraMatrixL                                                                左相机的内参矩阵

2)Mat distCoeffL = (Mat_<double>(5, 1) .......                          左相机 畸变参数    即K1K2P1P2K3

3) Mat cameraMatrixR                                                               右相机的内参矩阵

4)Mat distCoeffR = (Mat_<double>(5, 1)  .......                          右相机畸变参数    即K1K2P1P2K3

5) Mat T = (Mat_<double>(3, 1) << -1.210187345641146e+02, 0.519235426836325, -0.425535566316217);//  相机的 平移向量

6) Mat rec = (Mat_<double>(3, 3) << 0.99934112270088...................        相机的旋转向量 

一共6个相机参数,1、2是 左相机的参数; 3、4是 右相机的参数; 5、6是相机(相对)整体的参数。

 

 

 

2. 实时采集数据,进行测距

效果:

 

源代码:


      /******************************/
      /* 立体匹配和测距 */
      /******************************/
      #include <opencv2/opencv.hpp> 
      #include <iostream> 
      #include <math.h> 
      using namespace std;
      using namespace cv;
      const int imageWidth = 640; //摄像头的分辨率 
      const int imageHeight = 360;
      Vec3f  point3;
      float d;
      Size imageSize = Size(imageWidth, imageHeight);
      Mat rgbImageL, grayImageL;
      Mat rgbImageR, grayImageR;
      Mat rectifyImageL, rectifyImageR;
      Rect validROIL;//图像校正之后,会对图像进行裁剪,这里的validROI就是指裁剪之后的区域 
      Rect validROIR;
      Mat mapLx, mapLy, mapRx, mapRy; //映射表 
      Mat Rl, Rr, Pl, Pr, Q; //校正旋转矩阵R,投影矩阵P 重投影矩阵Q
      Mat xyz; //三维坐标
      Point origin; //鼠标按下的起始点
      Rect selection; //定义矩形选框
      bool selectObject = false; //是否选择对象
      int blockSize = 0, uniquenessRatio = 0, numDisparities = 0;
      Ptr<StereoBM> bm = StereoBM::create(16, 9);
      /*事先标定好的左相机的内参矩阵
      fx 0 cx
      0 fy cy
      0 0 1
      */
      Mat cameraMatrixL = (Mat_<double>(3, 3) << 418.523322187048, -1.26842201390676, 343.908870120890,
     	0, 421.222568242056, 235.466208987968,
     	0, 0, 1);
      //获得的畸变参数
      /*418.523322187048 0 0
      -1.26842201390676 421.222568242056 0
      344.758267538961 243.318992284899 1 */ //2
      Mat distCoeffL = (Mat_<double>(5, 1) << 0.006636837611004, 0.050240447649195, 0.006681263320267, 0.003130367429418, 0);
      //[0.006636837611004,0.050240447649195] [0.006681263320267,0.003130367429418]
      /*事先标定好的右相机的内参矩阵
      fx 0 cx
      0 fy cy
      0 0 1
      */
      Mat cameraMatrixR = (Mat_<double>(3, 3) << 417.417985082506, 0.498638151824367, 309.903372309072,
     	0, 419.795432389420, 230.6,
     	0, 0, 1);
      /*
      417.417985082506 0 0
      0.498638151824367 419.795432389420 0
      309.903372309072 236.256106972796 1
      */ //2
      Mat distCoeffR = (Mat_<double>(5, 1) << -0.038407383078874, 0.236392800301615, 0.004121779274885, 0.002296129959664, 0);
      //[-0.038407383078874,0.236392800301615] [0.004121779274885,0.002296129959664]
      Mat T = (Mat_<double>(3, 1) << -1.210187345641146e+02, 0.519235426836325, -0.425535566316217);//T平移向量
      //[-1.210187345641146e+02,0.519235426836325,-0.425535566316217]
      //对应Matlab所得T参数
      //Mat rec = (Mat_<double>(3, 1) << -0.00306, -0.03207, 0.00206);//rec旋转向量,对应matlab om参数 我 
      Mat rec = (Mat_<double>(3, 3) << 0.999341122700880, -0.00206388651740061, 0.0362361815232777,
     	0.000660748031451783, 0.999250989651683, 0.0386913826603732,
     	-0.0362888948713456, -0.0386419468010579, 0.998593969567432); //rec旋转向量,对应matlab om参数 我 
      /* 0.999341122700880 0.000660748031451783 -0.0362888948713456
      -0.00206388651740061 0.999250989651683 -0.0386419468010579
      0.0362361815232777 0.0386913826603732 0.998593969567432 */
      //Mat T = (Mat_<double>(3, 1) << -48.4, 0.241, -0.0344);//T平移向量
      //[-1.210187345641146e+02,0.519235426836325,-0.425535566316217]
      //对应Matlab所得T参数
      Mat R;//R 旋转矩阵
     	  /*****立体匹配*****/
      void stereo_match(int, void*)
      {
      	bm->setBlockSize(2 * blockSize + 5); //SAD窗口大小,5~21之间为宜
      	bm->setROI1(validROIL);
      	bm->setROI2(validROIR);
      	bm->setPreFilterCap(31);
      	bm->setMinDisparity(0);  //最小视差,默认值为0, 可以是负值,int型
      	bm->setNumDisparities(numDisparities * 16 + 16);//视差窗口,即最大视差值与最小视差值之差,窗口大小必须是16的整数倍,int型
      	bm->setTextureThreshold(10);
      	bm->setUniquenessRatio(uniquenessRatio);//uniquenessRatio主要可以防止误匹配
      	bm->setSpeckleWindowSize(100);
      	bm->setSpeckleRange(32);
      	bm->setDisp12MaxDiff(-1);
      	Mat disp, disp8;
      	bm->compute(rectifyImageL, rectifyImageR, disp);//输入图像必须为灰度图
      	disp.convertTo(disp8, CV_8U, 255 / ((numDisparities * 16 + 16)*16.));//计算出的视差是CV_16S格式
      	reprojectImageTo3D(disp, xyz, Q, true); //在实际求距离时,ReprojectTo3D出来的X / W, Y / W, Z / W都要乘以16(也就是W除以16),才能得到正确的三维坐标信息。
      	xyz = xyz * 16;
      	imshow("disparity", disp8);
      }
      /*****描述:鼠标操作回调*****/
      static void onMouse(int event, int x, int y, int, void*)
      {
     	if (selectObject)
      	{
      		selection.x = MIN(x, origin.x);
      		selection.y = MIN(y, origin.y);
      		selection.width = std::abs(x - origin.x);
      		selection.height = std::abs(y - origin.y);
      	}
     	switch (event)
      	{
     	case EVENT_LBUTTONDOWN:   //鼠标左按钮按下的事件
      		origin = Point(x, y);
      		selection = Rect(x, y, 0, 0);
      		selectObject = true;
     		//cout << origin << "in world coordinate is: " << xyz.at<Vec3f>(origin) << endl;
       point3 = xyz.at<Vec3f>(origin);
      		point3[0];
     		//cout << "point3[0]:" << point3[0] << "point3[1]:" << point3[1] << "point3[2]:" << point3[2]<<endl;
     		cout << "世界坐标:" << endl;
     		cout << "x: " << point3[0] << " y: " << point3[1] << " z: " << point3[2] << endl;
      		 d = point3[0] * point3[0]+ point3[1] * point3[1]+ point3[2] * point3[2];
      		 d = sqrt(d);   //mm
     		// cout << "距离是:" << d << "mm" << endl;
      		 d = d / 10.0;   //cm
      cout << "距离是:" << d << "cm" << endl;
     		// d = d/1000.0; //m
     		// cout << "距离是:" << d << "m" << endl;
     		break;
     	case EVENT_LBUTTONUP: //鼠标左按钮释放的事件
      		selectObject = false;
     		if (selection.width > 0 && selection.height > 0)
     			break;
      	}
      }
      /*****主函数*****/
      int main()
      {
     	/*
       立体校正
       */
      	Rodrigues(rec, R); //Rodrigues变换
      	stereoRectify(cameraMatrixL, distCoeffL, cameraMatrixR, distCoeffR, imageSize, R, T, Rl, Rr, Pl, Pr, Q, CALIB_ZERO_DISPARITY,
     		0, imageSize, &validROIL, &validROIR);
      	initUndistortRectifyMap(cameraMatrixL, distCoeffL, Rl, Pl, imageSize, CV_32FC1, mapLx, mapLy);
      	initUndistortRectifyMap(cameraMatrixR, distCoeffR, Rr, Pr, imageSize, CV_32FC1, mapRx, mapRy);
     	/*
       打开摄像头
       */
      	VideoCapture cap;
      		cap.open(1); //打开相机,电脑自带摄像头一般编号为0,外接摄像头编号为1,主要是在设备管理器中查看自己摄像头的编号。
      		cap.set(CV_CAP_PROP_FRAME_WIDTH, 2560);  //设置捕获视频的宽度
      		cap.set(CV_CAP_PROP_FRAME_HEIGHT, 720);  //设置捕获视频的高度
     		if (!cap.isOpened()) //判断是否成功打开相机
      		{
     			cout << "摄像头打开失败!" << endl;
     			return -1;
      		}
      		Mat frame, frame_L, frame_R;
      		cap >> frame; //从相机捕获一帧图像
     		cout << "Painted ImageL" << endl;
     		cout << "Painted ImageR" << endl;
     		while (1) {
     			double fScale = 0.5; //定义缩放系数,对2560*720图像进行缩放显示(2560*720图像过大,液晶屏分辨率较小时,需要缩放才可完整显示在屏幕) 
      			Size dsize = Size(frame.cols*fScale, frame.rows*fScale);
      			Mat imagedst = Mat(dsize, CV_32S);
      			resize(frame, imagedst, dsize);
     			char image_left[200];
     			char image_right[200];
      			frame_L = imagedst(Rect(0, 0, 640, 360));  //获取缩放后左Camera的图像
     		// namedWindow("Video_L", 1);
     		// imshow("Video_L", frame_L);
      			frame_R = imagedst(Rect(640, 0, 640, 360)); //获取缩放后右Camera的图像
     	// namedWindow("Video_R", 2);
      // imshow("Video_R", frame_R);
      			cap >> frame;
     			/*
       读取图片
       */
     			//rgbImageL = imread("image_left_1.jpg", CV_LOAD_IMAGE_COLOR);
      			cvtColor(frame_L, grayImageL, CV_BGR2GRAY);
     			//rgbImageR = imread("image_right_1.jpg", CV_LOAD_IMAGE_COLOR);
      			cvtColor(frame_R, grayImageR, CV_BGR2GRAY);
     		// imshow("ImageL Before Rectify", grayImageL);
     		// imshow("ImageR Before Rectify", grayImageR);
     			/*
       经过remap之后,左右相机的图像已经共面并且行对准了
       */
      			remap(grayImageL, rectifyImageL, mapLx, mapLy, INTER_LINEAR);
      			remap(grayImageR, rectifyImageR, mapRx, mapRy, INTER_LINEAR);
     			/*
       把校正结果显示出来
       */
      			Mat rgbRectifyImageL, rgbRectifyImageR;
      			cvtColor(rectifyImageL, rgbRectifyImageL, CV_GRAY2BGR);  //伪彩色图
      			cvtColor(rectifyImageR, rgbRectifyImageR, CV_GRAY2BGR);
     			//单独显示
     			//rectangle(rgbRectifyImageL, validROIL, Scalar(0, 0, 255), 3, 8);
     			//rectangle(rgbRectifyImageR, validROIR, Scalar(0, 0, 255), 3, 8);
     		// imshow("ImageL After Rectify", rgbRectifyImageL);
     		// imshow("ImageR After Rectify", rgbRectifyImageR);
     			//显示在同一张图上
      			Mat canvas;
     			double sf;
     			int w, h;
      			sf = 600. / MAX(imageSize.width, imageSize.height);
      			w = cvRound(imageSize.width * sf);
      			h = cvRound(imageSize.height * sf);
      			canvas.create(h, w * 2, CV_8UC3);   //注意通道
      //左图像画到画布上
      			Mat canvasPart = canvas(Rect(w * 0, 0, w, h)); //得到画布的一部分 
      			resize(rgbRectifyImageL, canvasPart, canvasPart.size(), 0, 0, INTER_AREA); //把图像缩放到跟canvasPart一样大小 
     			Rect vroiL(cvRound(validROIL.x*sf), cvRound(validROIL.y*sf), //获得被截取的区域 
       cvRound(validROIL.width*sf), cvRound(validROIL.height*sf));
     			//rectangle(canvasPart, vroiL, Scalar(0, 0, 255), 3, 8); //画上一个矩形 
     		// cout << "Painted ImageL" << endl;
     			//右图像画到画布上
      			canvasPart = canvas(Rect(w, 0, w, h)); //获得画布的另一部分 
      			resize(rgbRectifyImageR, canvasPart, canvasPart.size(), 0, 0, INTER_LINEAR);
     			Rect vroiR(cvRound(validROIR.x * sf), cvRound(validROIR.y*sf),
       cvRound(validROIR.width * sf), cvRound(validROIR.height * sf));
     			//rectangle(canvasPart, vroiR, Scalar(0, 0, 255), 3, 8);
     		// cout << "Painted ImageR" << endl;
     			//画上对应的线条
     			for (int i = 0; i < canvas.rows; i += 16)
       line(canvas, Point(0, i), Point(canvas.cols, i), Scalar(0, 255, 0), 1, 8);
      			imshow("rectified", canvas);
     			/*
       立体匹配
       */
      			namedWindow("disparity", CV_WINDOW_AUTOSIZE);
     			// 创建SAD窗口 Trackbar
      			createTrackbar("BlockSize:\n", "disparity", &blockSize, 8, stereo_match);
     			// 创建视差唯一性百分比窗口 Trackbar
      			createTrackbar("UniquenessRatio:\n", "disparity", &uniquenessRatio, 50, stereo_match);
     			// 创建视差窗口 Trackbar
      			createTrackbar("NumDisparities:\n", "disparity", &numDisparities, 16, stereo_match);
     			//鼠标响应函数setMouseCallback(窗口名称, 鼠标回调函数, 传给回调函数的参数,一般取0)
      			setMouseCallback("disparity", onMouse, 0);
      			stereo_match(0, 0);
      			waitKey(10);
      		} //wheil
     	return 0;
      }
  
 

 

希望对你有帮助。

 

补充说明:

1.关于如何求出世界坐标?

1)x,y,z 是由

Vec3f point3;

point3 = xyz.at<Vec3f>(origin); 来转化的。

cout << "x: " << point3[0] << "  y: " << point3[1] << "  z: " << point3[2] << endl;
 

2)x,y,z求平方和后开根号,是两点的距离公式,即点(0,0,0)------双目摄像头的中心点,和点(x,y,z)进行两点求距离。

 

 

 

文章来源: guo-pu.blog.csdn.net,作者:一颗小树x,版权归原作者所有,如需转载,请联系作者。

原文链接:guo-pu.blog.csdn.net/article/details/86744936

【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。