双目 机器视觉-- 测距
目录
首先进行双目定标,获取双目摄像头内部的参数后,进行测距。
注意:双目定标的效果会影响测距的精准度,建议大家在做双目定标时,做好一些(尽量让误差小)
本次的双目视觉测距,基于BM算法。
1.双目图片--测距:
效果:
本人通过测试,误差是1cm.
其中参数:BlockSize、UniquenessRatio、NumDisparities 根据实际情况来调整;
源代码:
-
/* 双目测距 */
-
-
#include <opencv2/opencv.hpp>
-
#include <iostream>
-
#include <math.h>
-
-
using namespace std;
-
using namespace cv;
-
-
const int imageWidth = 640; //摄像头的分辨率
-
const int imageHeight = 360;
-
Vec3f point3;
-
float d;
-
Size imageSize = Size(imageWidth, imageHeight);
-
-
Mat rgbImageL, grayImageL;
-
Mat rgbImageR, grayImageR;
-
Mat rectifyImageL, rectifyImageR;
-
-
Rect validROIL;//图像校正之后,会对图像进行裁剪,这里的validROI就是指裁剪之后的区域
-
Rect validROIR;
-
-
Mat mapLx, mapLy, mapRx, mapRy; //映射表
-
Mat Rl, Rr, Pl, Pr, Q; //校正旋转矩阵R,投影矩阵P 重投影矩阵Q
-
Mat xyz; //三维坐标
-
-
Point origin; //鼠标按下的起始点
-
Rect selection; //定义矩形选框
-
bool selectObject = false; //是否选择对象
-
-
-
-
-
int blockSize = 0, uniquenessRatio = 0, numDisparities = 0;
-
Ptr<StereoBM> bm = StereoBM::create(16, 9);
-
-
/*事先标定好的左相机的内参矩阵
-
fx 0 cx
-
0 fy cy
-
0 0 1
-
*/
-
Mat cameraMatrixL = (Mat_<double>(3, 3) << 418.523322187048, -1.26842201390676, 343.908870120890,
-
0, 421.222568242056, 235.466208987968,
-
0, 0, 1);
-
//获得的畸变参数
-
-
-
-
/*418.523322187048 0 0
-
-1.26842201390676 421.222568242056 0
-
344.758267538961 243.318992284899 1 */ //2
-
-
Mat distCoeffL = (Mat_<double>(5, 1) << 0.006636837611004, 0.050240447649195, 0.006681263320267, 0.003130367429418, 0);
-
//[0.006636837611004,0.050240447649195] [0.006681263320267,0.003130367429418]
-
-
-
/*事先标定好的右相机的内参矩阵
-
fx 0 cx
-
0 fy cy
-
0 0 1
-
*/
-
Mat cameraMatrixR = (Mat_<double>(3, 3) << 417.417985082506, 0.498638151824367, 309.903372309072,
-
0, 419.795432389420, 230.6,
-
0, 0, 1);
-
-
-
/*
-
417.417985082506 0 0
-
0.498638151824367 419.795432389420 0
-
309.903372309072 236.256106972796 1
-
*/ //2
-
-
-
Mat distCoeffR = (Mat_<double>(5, 1) << -0.038407383078874, 0.236392800301615, 0.004121779274885, 0.002296129959664, 0);
-
//[-0.038407383078874,0.236392800301615] [0.004121779274885,0.002296129959664]
-
-
-
-
Mat T = (Mat_<double>(3, 1) << -1.210187345641146e+02, 0.519235426836325, -0.425535566316217);//T平移向量
-
//[-1.210187345641146e+02,0.519235426836325,-0.425535566316217]
-
//对应Matlab所得T参数
-
//Mat rec = (Mat_<double>(3, 1) << -0.00306, -0.03207, 0.00206);//rec旋转向量,对应matlab om参数 我
-
Mat rec = (Mat_<double>(3, 3) << 0.999341122700880, -0.00206388651740061, 0.0362361815232777,
-
0.000660748031451783, 0.999250989651683, 0.0386913826603732,
-
-0.0362888948713456, -0.0386419468010579, 0.998593969567432); //rec旋转向量,对应matlab om参数 我
-
-
/* 0.999341122700880 0.000660748031451783 -0.0362888948713456
-
-0.00206388651740061 0.999250989651683 -0.0386419468010579
-
0.0362361815232777 0.0386913826603732 0.998593969567432 */
-
-
//Mat T = (Mat_<double>(3, 1) << -48.4, 0.241, -0.0344);//T平移向量
-
//[-1.210187345641146e+02,0.519235426836325,-0.425535566316217]
-
//对应Matlab所得T参数
-
-
Mat R;//R 旋转矩阵
-
-
-
/*****立体匹配*****/
-
void stereo_match(int, void*)
-
{
-
bm->setBlockSize(2 * blockSize + 5); //SAD窗口大小,5~21之间为宜
-
bm->setROI1(validROIL);
-
bm->setROI2(validROIR);
-
bm->setPreFilterCap(31);
-
bm->setMinDisparity(0); //最小视差,默认值为0, 可以是负值,int型
-
bm->setNumDisparities(numDisparities * 16 + 16);//视差窗口,即最大视差值与最小视差值之差,窗口大小必须是16的整数倍,int型
-
bm->setTextureThreshold(10);
-
bm->setUniquenessRatio(uniquenessRatio);//uniquenessRatio主要可以防止误匹配
-
bm->setSpeckleWindowSize(100);
-
bm->setSpeckleRange(32);
-
bm->setDisp12MaxDiff(-1);
-
Mat disp, disp8;
-
bm->compute(rectifyImageL, rectifyImageR, disp);//输入图像必须为灰度图
-
disp.convertTo(disp8, CV_8U, 255 / ((numDisparities * 16 + 16)*16.));//计算出的视差是CV_16S格式
-
reprojectImageTo3D(disp, xyz, Q, true); //在实际求距离时,ReprojectTo3D出来的X / W, Y / W, Z / W都要乘以16(也就是W除以16),才能得到正确的三维坐标信息。
-
xyz = xyz * 16;
-
imshow("disparity", disp8);
-
}
-
-
/*****描述:鼠标操作回调*****/
-
static void onMouse(int event, int x, int y, int, void*)
-
{
-
if (selectObject)
-
{
-
selection.x = MIN(x, origin.x);
-
selection.y = MIN(y, origin.y);
-
selection.width = std::abs(x - origin.x);
-
selection.height = std::abs(y - origin.y);
-
}
-
-
switch (event)
-
{
-
case EVENT_LBUTTONDOWN: //鼠标左按钮按下的事件
-
origin = Point(x, y);
-
selection = Rect(x, y, 0, 0);
-
selectObject = true;
-
//cout << origin << "in world coordinate is: " << xyz.at<Vec3f>(origin) << endl;
-
point3 = xyz.at<Vec3f>(origin);
-
point3[0];
-
//cout << "point3[0]:" << point3[0] << "point3[1]:" << point3[1] << "point3[2]:" << point3[2]<<endl;
-
cout << "世界坐标:" << endl;
-
cout << "x: " << point3[0] << " y: " << point3[1] << " z: " << point3[2] << endl;
-
d = point3[0] * point3[0]+ point3[1] * point3[1]+ point3[2] * point3[2];
-
d = sqrt(d); //mm
-
// cout << "距离是:" << d << "mm" << endl;
-
-
d = d / 10.0; //cm
-
cout << "距离是:" << d << "cm" << endl;
-
-
// d = d/1000.0; //m
-
// cout << "距离是:" << d << "m" << endl;
-
-
break;
-
case EVENT_LBUTTONUP: //鼠标左按钮释放的事件
-
selectObject = false;
-
if (selection.width > 0 && selection.height > 0)
-
break;
-
}
-
}
-
-
-
/*****主函数*****/
-
int main()
-
{
-
/*
-
立体校正
-
*/
-
Rodrigues(rec, R); //Rodrigues变换
-
stereoRectify(cameraMatrixL, distCoeffL, cameraMatrixR, distCoeffR, imageSize, R, T, Rl, Rr, Pl, Pr, Q, CALIB_ZERO_DISPARITY,
-
0, imageSize, &validROIL, &validROIR);
-
initUndistortRectifyMap(cameraMatrixL, distCoeffL, Rl, Pr, imageSize, CV_32FC1, mapLx, mapLy);
-
initUndistortRectifyMap(cameraMatrixR, distCoeffR, Rr, Pr, imageSize, CV_32FC1, mapRx, mapRy);
-
-
/*
-
读取图片
-
*/
-
rgbImageL = imread("image_left_1.jpg", CV_LOAD_IMAGE_COLOR);
-
cvtColor(rgbImageL, grayImageL, CV_BGR2GRAY);
-
rgbImageR = imread("image_right_1.jpg", CV_LOAD_IMAGE_COLOR);
-
cvtColor(rgbImageR, grayImageR, CV_BGR2GRAY);
-
-
imshow("ImageL Before Rectify", grayImageL);
-
imshow("ImageR Before Rectify", grayImageR);
-
-
/*
-
经过remap之后,左右相机的图像已经共面并且行对准了
-
*/
-
remap(grayImageL, rectifyImageL, mapLx, mapLy, INTER_LINEAR);
-
remap(grayImageR, rectifyImageR, mapRx, mapRy, INTER_LINEAR);
-
-
/*
-
把校正结果显示出来
-
*/
-
Mat rgbRectifyImageL, rgbRectifyImageR;
-
cvtColor(rectifyImageL, rgbRectifyImageL, CV_GRAY2BGR); //伪彩色图
-
cvtColor(rectifyImageR, rgbRectifyImageR, CV_GRAY2BGR);
-
-
//单独显示
-
//rectangle(rgbRectifyImageL, validROIL, Scalar(0, 0, 255), 3, 8);
-
//rectangle(rgbRectifyImageR, validROIR, Scalar(0, 0, 255), 3, 8);
-
imshow("ImageL After Rectify", rgbRectifyImageL);
-
imshow("ImageR After Rectify", rgbRectifyImageR);
-
-
//显示在同一张图上
-
Mat canvas;
-
double sf;
-
int w, h;
-
sf = 600. / MAX(imageSize.width, imageSize.height);
-
w = cvRound(imageSize.width * sf);
-
h = cvRound(imageSize.height * sf);
-
canvas.create(h, w * 2, CV_8UC3); //注意通道
-
-
//左图像画到画布上
-
Mat canvasPart = canvas(Rect(w * 0, 0, w, h)); //得到画布的一部分
-
resize(rgbRectifyImageL, canvasPart, canvasPart.size(), 0, 0, INTER_AREA); //把图像缩放到跟canvasPart一样大小
-
Rect vroiL(cvRound(validROIL.x*sf), cvRound(validROIL.y*sf), //获得被截取的区域
-
cvRound(validROIL.width*sf), cvRound(validROIL.height*sf));
-
//rectangle(canvasPart, vroiL, Scalar(0, 0, 255), 3, 8); //画上一个矩形
-
cout << "Painted ImageL" << endl;
-
-
//右图像画到画布上
-
canvasPart = canvas(Rect(w, 0, w, h)); //获得画布的另一部分
-
resize(rgbRectifyImageR, canvasPart, canvasPart.size(), 0, 0, INTER_LINEAR);
-
Rect vroiR(cvRound(validROIR.x * sf), cvRound(validROIR.y*sf),
-
cvRound(validROIR.width * sf), cvRound(validROIR.height * sf));
-
//rectangle(canvasPart, vroiR, Scalar(0, 0, 255), 3, 8);
-
cout << "Painted ImageR" << endl;
-
-
//画上对应的线条
-
for (int i = 0; i < canvas.rows; i += 16)
-
line(canvas, Point(0, i), Point(canvas.cols, i), Scalar(0, 255, 0), 1, 8);
-
imshow("rectified", canvas);
-
-
/*
-
立体匹配
-
*/
-
namedWindow("disparity", CV_WINDOW_AUTOSIZE);
-
// 创建SAD窗口 Trackbar
-
createTrackbar("BlockSize:\n", "disparity", &blockSize, 8, stereo_match);
-
// 创建视差唯一性百分比窗口 Trackbar
-
createTrackbar("UniquenessRatio:\n", "disparity", &uniquenessRatio, 50, stereo_match);
-
// 创建视差窗口 Trackbar
-
createTrackbar("NumDisparities:\n", "disparity", &numDisparities, 16, stereo_match);
-
//鼠标响应函数setMouseCallback(窗口名称, 鼠标回调函数, 传给回调函数的参数,一般取0)
-
setMouseCallback("disparity", onMouse, 0);
-
stereo_match(0, 0);
-
-
waitKey(0);
-
return 0;
-
}
流程说明:
先采集左右摄像头的图片,然后,修改一下指定的图片,可以进行测距。
里面有双目摄像头的参数,具体需要自己定标和矫正后,然后,填入。
双目定标可以参考:双目视觉 定标+矫正 (基于MATLAB)
双目数据转化可以参考:双目视觉 三维重建、测距 ---准备工作(数据转化)
详细讲解摄像头参数:
1)Mat cameraMatrixL 左相机的内参矩阵
2)Mat distCoeffL = (Mat_<double>(5, 1) ....... 左相机 畸变参数 即K1,K2,P1,P2,K3。
3) Mat cameraMatrixR 右相机的内参矩阵
4)Mat distCoeffR = (Mat_<double>(5, 1) ....... 右相机畸变参数 即K1,K2,P1,P2,K3。
5) Mat T = (Mat_<double>(3, 1) << -1.210187345641146e+02, 0.519235426836325, -0.425535566316217);// 相机的 平移向量
6) Mat rec = (Mat_<double>(3, 3) << 0.99934112270088................... 相机的旋转向量
一共6个相机参数,1、2是 左相机的参数; 3、4是 右相机的参数; 5、6是相机(相对)整体的参数。
2. 实时采集数据,进行测距
效果:
源代码:
-
-
/******************************/
-
/* 立体匹配和测距 */
-
/******************************/
-
-
#include <opencv2/opencv.hpp>
-
#include <iostream>
-
#include <math.h>
-
-
using namespace std;
-
using namespace cv;
-
-
const int imageWidth = 640; //摄像头的分辨率
-
const int imageHeight = 360;
-
Vec3f point3;
-
float d;
-
Size imageSize = Size(imageWidth, imageHeight);
-
-
Mat rgbImageL, grayImageL;
-
Mat rgbImageR, grayImageR;
-
Mat rectifyImageL, rectifyImageR;
-
-
Rect validROIL;//图像校正之后,会对图像进行裁剪,这里的validROI就是指裁剪之后的区域
-
Rect validROIR;
-
-
Mat mapLx, mapLy, mapRx, mapRy; //映射表
-
Mat Rl, Rr, Pl, Pr, Q; //校正旋转矩阵R,投影矩阵P 重投影矩阵Q
-
Mat xyz; //三维坐标
-
-
Point origin; //鼠标按下的起始点
-
Rect selection; //定义矩形选框
-
bool selectObject = false; //是否选择对象
-
-
-
-
-
int blockSize = 0, uniquenessRatio = 0, numDisparities = 0;
-
Ptr<StereoBM> bm = StereoBM::create(16, 9);
-
-
/*事先标定好的左相机的内参矩阵
-
fx 0 cx
-
0 fy cy
-
0 0 1
-
*/
-
Mat cameraMatrixL = (Mat_<double>(3, 3) << 418.523322187048, -1.26842201390676, 343.908870120890,
-
0, 421.222568242056, 235.466208987968,
-
0, 0, 1);
-
//获得的畸变参数
-
-
-
-
/*418.523322187048 0 0
-
-1.26842201390676 421.222568242056 0
-
344.758267538961 243.318992284899 1 */ //2
-
-
Mat distCoeffL = (Mat_<double>(5, 1) << 0.006636837611004, 0.050240447649195, 0.006681263320267, 0.003130367429418, 0);
-
//[0.006636837611004,0.050240447649195] [0.006681263320267,0.003130367429418]
-
-
-
/*事先标定好的右相机的内参矩阵
-
fx 0 cx
-
0 fy cy
-
0 0 1
-
*/
-
Mat cameraMatrixR = (Mat_<double>(3, 3) << 417.417985082506, 0.498638151824367, 309.903372309072,
-
0, 419.795432389420, 230.6,
-
0, 0, 1);
-
-
-
/*
-
417.417985082506 0 0
-
0.498638151824367 419.795432389420 0
-
309.903372309072 236.256106972796 1
-
*/ //2
-
-
-
Mat distCoeffR = (Mat_<double>(5, 1) << -0.038407383078874, 0.236392800301615, 0.004121779274885, 0.002296129959664, 0);
-
//[-0.038407383078874,0.236392800301615] [0.004121779274885,0.002296129959664]
-
-
-
-
Mat T = (Mat_<double>(3, 1) << -1.210187345641146e+02, 0.519235426836325, -0.425535566316217);//T平移向量
-
//[-1.210187345641146e+02,0.519235426836325,-0.425535566316217]
-
//对应Matlab所得T参数
-
//Mat rec = (Mat_<double>(3, 1) << -0.00306, -0.03207, 0.00206);//rec旋转向量,对应matlab om参数 我
-
Mat rec = (Mat_<double>(3, 3) << 0.999341122700880, -0.00206388651740061, 0.0362361815232777,
-
0.000660748031451783, 0.999250989651683, 0.0386913826603732,
-
-0.0362888948713456, -0.0386419468010579, 0.998593969567432); //rec旋转向量,对应matlab om参数 我
-
-
/* 0.999341122700880 0.000660748031451783 -0.0362888948713456
-
-0.00206388651740061 0.999250989651683 -0.0386419468010579
-
0.0362361815232777 0.0386913826603732 0.998593969567432 */
-
-
//Mat T = (Mat_<double>(3, 1) << -48.4, 0.241, -0.0344);//T平移向量
-
//[-1.210187345641146e+02,0.519235426836325,-0.425535566316217]
-
//对应Matlab所得T参数
-
-
Mat R;//R 旋转矩阵
-
-
-
/*****立体匹配*****/
-
void stereo_match(int, void*)
-
{
-
bm->setBlockSize(2 * blockSize + 5); //SAD窗口大小,5~21之间为宜
-
bm->setROI1(validROIL);
-
bm->setROI2(validROIR);
-
bm->setPreFilterCap(31);
-
bm->setMinDisparity(0); //最小视差,默认值为0, 可以是负值,int型
-
bm->setNumDisparities(numDisparities * 16 + 16);//视差窗口,即最大视差值与最小视差值之差,窗口大小必须是16的整数倍,int型
-
bm->setTextureThreshold(10);
-
bm->setUniquenessRatio(uniquenessRatio);//uniquenessRatio主要可以防止误匹配
-
bm->setSpeckleWindowSize(100);
-
bm->setSpeckleRange(32);
-
bm->setDisp12MaxDiff(-1);
-
Mat disp, disp8;
-
bm->compute(rectifyImageL, rectifyImageR, disp);//输入图像必须为灰度图
-
disp.convertTo(disp8, CV_8U, 255 / ((numDisparities * 16 + 16)*16.));//计算出的视差是CV_16S格式
-
reprojectImageTo3D(disp, xyz, Q, true); //在实际求距离时,ReprojectTo3D出来的X / W, Y / W, Z / W都要乘以16(也就是W除以16),才能得到正确的三维坐标信息。
-
xyz = xyz * 16;
-
imshow("disparity", disp8);
-
}
-
-
/*****描述:鼠标操作回调*****/
-
static void onMouse(int event, int x, int y, int, void*)
-
{
-
if (selectObject)
-
{
-
selection.x = MIN(x, origin.x);
-
selection.y = MIN(y, origin.y);
-
selection.width = std::abs(x - origin.x);
-
selection.height = std::abs(y - origin.y);
-
}
-
-
switch (event)
-
{
-
case EVENT_LBUTTONDOWN: //鼠标左按钮按下的事件
-
origin = Point(x, y);
-
selection = Rect(x, y, 0, 0);
-
selectObject = true;
-
//cout << origin << "in world coordinate is: " << xyz.at<Vec3f>(origin) << endl;
-
point3 = xyz.at<Vec3f>(origin);
-
point3[0];
-
//cout << "point3[0]:" << point3[0] << "point3[1]:" << point3[1] << "point3[2]:" << point3[2]<<endl;
-
cout << "世界坐标:" << endl;
-
cout << "x: " << point3[0] << " y: " << point3[1] << " z: " << point3[2] << endl;
-
d = point3[0] * point3[0]+ point3[1] * point3[1]+ point3[2] * point3[2];
-
d = sqrt(d); //mm
-
// cout << "距离是:" << d << "mm" << endl;
-
-
d = d / 10.0; //cm
-
cout << "距离是:" << d << "cm" << endl;
-
-
// d = d/1000.0; //m
-
// cout << "距离是:" << d << "m" << endl;
-
-
break;
-
case EVENT_LBUTTONUP: //鼠标左按钮释放的事件
-
selectObject = false;
-
if (selection.width > 0 && selection.height > 0)
-
break;
-
}
-
}
-
-
-
/*****主函数*****/
-
int main()
-
{
-
/*
-
立体校正
-
*/
-
Rodrigues(rec, R); //Rodrigues变换
-
stereoRectify(cameraMatrixL, distCoeffL, cameraMatrixR, distCoeffR, imageSize, R, T, Rl, Rr, Pl, Pr, Q, CALIB_ZERO_DISPARITY,
-
0, imageSize, &validROIL, &validROIR);
-
initUndistortRectifyMap(cameraMatrixL, distCoeffL, Rl, Pl, imageSize, CV_32FC1, mapLx, mapLy);
-
initUndistortRectifyMap(cameraMatrixR, distCoeffR, Rr, Pr, imageSize, CV_32FC1, mapRx, mapRy);
-
-
/*
-
打开摄像头
-
*/
-
VideoCapture cap;
-
-
cap.open(1); //打开相机,电脑自带摄像头一般编号为0,外接摄像头编号为1,主要是在设备管理器中查看自己摄像头的编号。
-
-
cap.set(CV_CAP_PROP_FRAME_WIDTH, 2560); //设置捕获视频的宽度
-
cap.set(CV_CAP_PROP_FRAME_HEIGHT, 720); //设置捕获视频的高度
-
-
if (!cap.isOpened()) //判断是否成功打开相机
-
-
{
-
-
cout << "摄像头打开失败!" << endl;
-
-
return -1;
-
-
}
-
-
Mat frame, frame_L, frame_R;
-
cap >> frame; //从相机捕获一帧图像
-
-
cout << "Painted ImageL" << endl;
-
cout << "Painted ImageR" << endl;
-
-
while (1) {
-
-
double fScale = 0.5; //定义缩放系数,对2560*720图像进行缩放显示(2560*720图像过大,液晶屏分辨率较小时,需要缩放才可完整显示在屏幕)
-
-
Size dsize = Size(frame.cols*fScale, frame.rows*fScale);
-
Mat imagedst = Mat(dsize, CV_32S);
-
-
resize(frame, imagedst, dsize);
-
char image_left[200];
-
char image_right[200];
-
frame_L = imagedst(Rect(0, 0, 640, 360)); //获取缩放后左Camera的图像
-
// namedWindow("Video_L", 1);
-
// imshow("Video_L", frame_L);
-
-
frame_R = imagedst(Rect(640, 0, 640, 360)); //获取缩放后右Camera的图像
-
// namedWindow("Video_R", 2);
-
// imshow("Video_R", frame_R);
-
cap >> frame;
-
/*
-
读取图片
-
*/
-
//rgbImageL = imread("image_left_1.jpg", CV_LOAD_IMAGE_COLOR);
-
cvtColor(frame_L, grayImageL, CV_BGR2GRAY);
-
//rgbImageR = imread("image_right_1.jpg", CV_LOAD_IMAGE_COLOR);
-
cvtColor(frame_R, grayImageR, CV_BGR2GRAY);
-
-
// imshow("ImageL Before Rectify", grayImageL);
-
// imshow("ImageR Before Rectify", grayImageR);
-
-
/*
-
经过remap之后,左右相机的图像已经共面并且行对准了
-
*/
-
remap(grayImageL, rectifyImageL, mapLx, mapLy, INTER_LINEAR);
-
remap(grayImageR, rectifyImageR, mapRx, mapRy, INTER_LINEAR);
-
-
/*
-
把校正结果显示出来
-
*/
-
Mat rgbRectifyImageL, rgbRectifyImageR;
-
cvtColor(rectifyImageL, rgbRectifyImageL, CV_GRAY2BGR); //伪彩色图
-
cvtColor(rectifyImageR, rgbRectifyImageR, CV_GRAY2BGR);
-
-
//单独显示
-
//rectangle(rgbRectifyImageL, validROIL, Scalar(0, 0, 255), 3, 8);
-
//rectangle(rgbRectifyImageR, validROIR, Scalar(0, 0, 255), 3, 8);
-
// imshow("ImageL After Rectify", rgbRectifyImageL);
-
// imshow("ImageR After Rectify", rgbRectifyImageR);
-
-
//显示在同一张图上
-
Mat canvas;
-
double sf;
-
int w, h;
-
sf = 600. / MAX(imageSize.width, imageSize.height);
-
w = cvRound(imageSize.width * sf);
-
h = cvRound(imageSize.height * sf);
-
canvas.create(h, w * 2, CV_8UC3); //注意通道
-
-
//左图像画到画布上
-
Mat canvasPart = canvas(Rect(w * 0, 0, w, h)); //得到画布的一部分
-
resize(rgbRectifyImageL, canvasPart, canvasPart.size(), 0, 0, INTER_AREA); //把图像缩放到跟canvasPart一样大小
-
Rect vroiL(cvRound(validROIL.x*sf), cvRound(validROIL.y*sf), //获得被截取的区域
-
cvRound(validROIL.width*sf), cvRound(validROIL.height*sf));
-
//rectangle(canvasPart, vroiL, Scalar(0, 0, 255), 3, 8); //画上一个矩形
-
// cout << "Painted ImageL" << endl;
-
-
//右图像画到画布上
-
canvasPart = canvas(Rect(w, 0, w, h)); //获得画布的另一部分
-
resize(rgbRectifyImageR, canvasPart, canvasPart.size(), 0, 0, INTER_LINEAR);
-
Rect vroiR(cvRound(validROIR.x * sf), cvRound(validROIR.y*sf),
-
cvRound(validROIR.width * sf), cvRound(validROIR.height * sf));
-
//rectangle(canvasPart, vroiR, Scalar(0, 0, 255), 3, 8);
-
// cout << "Painted ImageR" << endl;
-
-
//画上对应的线条
-
for (int i = 0; i < canvas.rows; i += 16)
-
line(canvas, Point(0, i), Point(canvas.cols, i), Scalar(0, 255, 0), 1, 8);
-
imshow("rectified", canvas);
-
-
/*
-
立体匹配
-
*/
-
namedWindow("disparity", CV_WINDOW_AUTOSIZE);
-
// 创建SAD窗口 Trackbar
-
createTrackbar("BlockSize:\n", "disparity", &blockSize, 8, stereo_match);
-
// 创建视差唯一性百分比窗口 Trackbar
-
createTrackbar("UniquenessRatio:\n", "disparity", &uniquenessRatio, 50, stereo_match);
-
// 创建视差窗口 Trackbar
-
createTrackbar("NumDisparities:\n", "disparity", &numDisparities, 16, stereo_match);
-
//鼠标响应函数setMouseCallback(窗口名称, 鼠标回调函数, 传给回调函数的参数,一般取0)
-
setMouseCallback("disparity", onMouse, 0);
-
stereo_match(0, 0);
-
-
waitKey(10);
-
-
} //wheil
-
return 0;
-
}
希望对你有帮助。
补充说明:
1.关于如何求出世界坐标?
1)x,y,z 是由
Vec3f point3;
point3 = xyz.at<Vec3f>(origin); 来转化的。
cout << "x: " << point3[0] << " y: " << point3[1] << " z: " << point3[2] << endl;
2)x,y,z求平方和后开根号,是两点的距离公式,即点(0,0,0)------双目摄像头的中心点,和点(x,y,z)进行两点求距离。
文章来源: guo-pu.blog.csdn.net,作者:一颗小树x,版权归原作者所有,如需转载,请联系作者。
原文链接:guo-pu.blog.csdn.net/article/details/86744936
- 点赞
- 收藏
- 关注作者
评论(0)