YOLOv3物体/目标检测之实战篇(Windows系统、Python3、TensorFlow2版本)
【摘要】 前言 基于YOLO进行物体检测、对象识别,在搭建好开发环境后,先和大家进行实践应用中,体验YOLOv3物体/目标检测效果和魅力;同时逐步了解YOLOv3的不足和优化思路。 开发环境参数系统:Windows 编程语言:Python 3.8 深度学习框架:TensorFlow 2.3 整合开发环境:Anaconda 开发代码IDE...
前言
开发环境参数
目录
前言
开发环境参数
体验YOLOv3物体/目标检测
1)下载代码,打开工程
2)下载权重文件
3)权重文件应用到工程
4)进行目标检测
调用模型的核心代码
YOLOv3的物体/目标检测效果:
体验YOLOv3物体/目标检测
1)下载代码,打开工程
打开后的页面是这样的:
2)下载权重文件
方式2:在我网盘提取
3)权重文件应用到工程
执行命令成功后,能看到在checkpoints目录下有三个新增文件
4)进行目标检测
# yolov3 检测图片的对象
python detect.py --image ./data/cat.jpg
# yolov3-tiny
python detect.py --weights ./checkpoints/yolov3-tiny.tf --tiny --image ./data/street.jpg
# webcam 摄像头实时检测对象
python detect_video.py --video 0
# video file 检测视频文件的对象
python detect_video.py --video path_to_file.mp4 --weights ./checkpoints/yolov3-tiny.tf --tiny
# video file with output
python detect_video.py --video path_to_file.mp4 --output ./output.avi
调用模型的核心代码
import time
from absl import app, flags, logging
from absl.flags import FLAGS
import cv2
import numpy as np
import tensorflow as tf
from yolov3_tf2.models import (
YoloV3, YoloV3Tiny
)
from yolov3_tf2.dataset import transform_images, load_tfrecord_dataset
from yolov3_tf2.utils import draw_outputs
flags.DEFINE_string('classes', './data/coco.names', 'path to classes file')
flags.DEFINE_string('weights', './checkpoints/yolov3.tf',
'path to weights file')
flags.DEFINE_boolean('tiny', False, 'yolov3 or yolov3-tiny')
flags.DEFINE_integer('size', 416, 'resize images to')
flags.DEFINE_string('image', './data/girl.png', 'path to input image')
flags.DEFINE_string('tfrecord', None, 'tfrecord instead of image')
flags.DEFINE_string('output', './output.jpg', 'path to output image')
flags.DEFINE_integer('num_classes', 80, 'number of classes in the model')
def main(_argv):
physical_devices = tf.config.experimental.list_physical_devices('GPU')
for physical_device in physical_devices:
tf.config.experimental.set_memory_growth(physical_device, True)
if FLAGS.tiny:
yolo = YoloV3Tiny(classes=FLAGS.num_classes)
else:
yolo = YoloV3(classes=FLAGS.num_classes)
yolo.load_weights(FLAGS.weights).expect_partial()
logging.info('weights loaded')
class_names = [c.strip() for c in open(FLAGS.classes).readlines()]
logging.info('classes loaded')
if FLAGS.tfrecord:
dataset = load_tfrecord_dataset(
FLAGS.tfrecord, FLAGS.classes, FLAGS.size)
dataset = dataset.shuffle(512)
img_raw, _label = next(iter(dataset.take(1)))
else:
img_raw = tf.image.decode_image(
open(FLAGS.image, 'rb').read(), channels=3)
img = tf.expand_dims(img_raw, 0)
img = transform_images(img, FLAGS.size)
t1 = time.time()
boxes, scores, classes, nums = yolo(img)
t2 = time.time()
logging.info('time: {}'.format(t2 - t1))
logging.info('detections:')
for i in range(nums[0]):
logging.info('\t{}, {}, {}'.format(class_names[int(classes[0][i])],
np.array(scores[0][i]),
np.array(boxes[0][i])))
img = cv2.cvtColor(img_raw.numpy(), cv2.COLOR_RGB2BGR)
img = draw_outputs(img, (boxes, scores, classes, nums), class_names)
cv2.imwrite(FLAGS.output, img)
logging.info('output saved to: {}'.format(FLAGS.output))
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass
希望对你有帮助。( •̀ ω •́ )✧
【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)