人工智能初创公司创办过程中的三个关键教训~~

举报
月饼!@#%&()zz 发表于 2020/09/08 19:25:17 2020/09/08
【摘要】 本文转载自公众号“读芯术”(ID:AI_Discovery)。我是一家人工智能初创公司的技术联合创始人,然而我们并未取得成功。Pharma Foresight着眼于医药商业智能领域,下面是我们的电梯广告:“目前制药公司的研发回报率低于资本成本,因此制药公司投资创新药物的利润越来越低。决定要进行哪些临床试验,获得批准的可能性是一个至关重要的指标,而这种指标目前正以一种非常主观且有偏见的方式来计...

本文转载自公众号“读芯术”(ID:AI_Discovery)。

我是一家人工智能初创公司的技术联合创始人,然而我们并未取得成功。Pharma Foresight着眼于医药商业智能领域,下面是我们的电梯广告:

“目前制药公司的研发回报率低于资本成本,因此制药公司投资创新药物的利润越来越低。决定要进行哪些临床试验,获得批准的可能性是一个至关重要的指标,而这种指标目前正以一种非常主观且有偏见的方式来计算。我们的AI算法可以更准确地估计这个数字,它节省了时间和金钱,最终造福患者。”

我们有一个很强大的团队,并采用精益创业策略进行快速迭代;我们与各种不同的利益相关者进行了接近100次的访谈,以确定早期的产品购买者并验证了他们对我们产品的需求;仅仅4个月后,我们就与一家大型制药公司的全球投资组合管理办公室合作,该公司支付了我们构建模型的费用,我们也保留了所有的知识产权。


然而,尽管遵循了很多初创公司的成功经验,PharmaForesight还是失败了。由于时运不济和判断失误,我们最终并没有成功。

这次失败让我更清晰地明确了一个道理:人工智能初创公司与SaaS初创公司采用的策略和方法是有微妙的区别的——但这并没有得到广泛认可。这篇文章的目的就是讲述我们曾犯的错误,避免更多的AI初创公司重蹈覆辙。

首先,什么是人工智能初创公司?

有很多初创公司声称他们使用人工智能,但实际上,他们使用的只是外包的人工劳动力或是基本的统计技术。伦敦MMC Ventures的一项研究发现,40%的所谓人工智能初创公司实际上并没有使用人工智能。

而本文的观点是,如果没有相对现代的机器学习技术,人工智能初创公司是不可能存在的。比如,Poly.ai如果没有深度的学习算法就不可能存在。

这与那些只有部分产品使用了AI的公司形成了鲜明对比。例如,Spotify就在机器学习上投入了大量资金,而且机器学习如今已成为其战略的核心。但是,Spotify在以一种协调的方式使用机器学习之前就已经存在了。对我来说,它更像是一个SaaS公司。

从这个角度出发,我将向你介绍我在创办人工智能初创公司中学到的一些经验。

1. 专有数据是关键


图源:unsplash

在商业情景中,思考人工智能的最佳方式是将其视为一种底层的支持技术,就像20世纪80年代出现的SQL数据库一样。SQL创造了价值数十亿美元的行业,比如客户关系管理。同样,人工智能将创造新的行业,并在大量商业用例中实现改进。


【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。