【论文笔记】Eidetic 3D LSTM: A Model for Video Prediction and Beyond
Eidetic 3D LSTM: A Model for Video Prediction and Beyond (ICLR 2019)
Yunbo Wang, Lu Jiang, Ming-Hsuan Yang, Li-Jia Li, Mingsheng Long, Li Fei-Fei
代码:https://github.com/google/e3d_lstm
问题:时空预测学习 Spatiotemporal Predictive Learning
如何为其它视频理解和推理任务学习有效的特征表示?
视频预测:输入历史视频帧,预测未来视频帧
无监督/自监督:不需要人工标注 → 特征学习
未来:确定性(物理规律等),随机性和不确定性
两类任务:单帧预测,多帧预测
类似任务
视频重构 Reconstruction
视频插帧 Interpolation
两类视频建模方法:
循环神经网络:在视频预测上效果优异
三维卷积神经网络:在动作分类上更胜一筹
RNN结合3D卷积
E3D-LSTM序列建模
短期信息:3D卷积
长期信息:基于自注意力的“回忆”机制
多任务学习:
像素级任务:视频预测
视频级任务:动作分类
ICLR 2019 Meta-Review
系列工作
Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics
Yunbo Wang, Jianjin Zhang, Hongyu Zhu, Mingsheng Long, Jianmin Wang, Philip S. Yu
CVPR, 2019
Eidetic 3D LSTM: A Model for Video Prediction and Beyond
Yunbo Wang, Lu Jiang, Ming-Hsuan Yang, Li-Jia Li, Mingsheng Long, Li Fei-Fei
ICLR, 2019
PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning
Yunbo Wang, Zhifeng Gao, Mingsheng Long, Jianmin Wang, Philip S. Yu
ICML, 2018
PredCNN: Predictive Learning with Cascade Convolutions
{Ziru Xu, Yunbo Wang}, Mingsheng Long, Jianmin Wang
IJCAI, 2018
PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs
Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng Gao, Philip S. Yu
NIPS, 2017
Spatiotemporal Pyramid Network for Video Action Recognition
Yunbo Wang, Mingsheng Long, Jianmin Wang, Philip S. Yu
CVPR, 2017
- 点赞
- 收藏
- 关注作者
评论(0)