机器学习相关的资料查询
迁移学习简明手册-王晋东
https://github.com/jindongwang/transferlearning-tutorial
变分自编码器VAE技术解析
https://blog.csdn.net/roguesir/article/details/81263442
https://blog.csdn.net/kingfoulin/article/details/92073101
https://yuanxiaosc.github.io/2018/08/26/%E5%8F%98%E5%88%86%E8%87%AA%E7%BC%96%E7%A0%81%E5%99%A8/
元学习:从小样本到快速强化学习(ICML19 tutorial)
https://blog.csdn.net/naipp/article/details/95621454
ADMM算法简介
https://www.zhihu.com/question/36566112
https://blog.csdn.net/shanglianlm/article/details/45919679
https://blog.csdn.net/oBanTianYun/article/details/72590188
https://joegaotao.github.io/2014/02/11/admm-stat-compute/
https://www.cnblogs.com/kailugaji/p/10433774.html
https://www.zhihu.com/question/36566112/answer/118715721
http://shijun.wang/2016/01/19/admm-for-distributed-statistical-learning/
深度学习中常用梯度优化方法
https://blog.csdn.net/u014595019/article/details/52989301
https://zhuanlan.zhihu.com/p/36327151
https://www.cnblogs.com/zingp/p/11352012.html
http://pelhans.com/2019/04/09/deepdive_tensorflow-note1/
遗传算法原理
https://blog.csdn.net/u010451580/article/details/51178225
https://zhuanlan.zhihu.com/p/28328304
https://blog.csdn.net/piaoxuezhong/article/details/78634630
https://www.cnblogs.com/maybe2030/p/4665837.html
算法基础
tflite转文本
https://blog.csdn.net/SilentOB/article/details/86479442
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/schema/schema.fbs
https://blog.csdn.net/limtyty/article/details/96430640
https://www.stacknoob.com/s/GLtp4vqnYigjeCpYC5gMZV
http://techblog.youdao.com/?p=1335
https://github.com/qiulongquan/android_face_detection
https://www.cnblogs.com/YouXiangLiThon/p/10131071.html
RL系列分析之DDPG算法
https://blog.csdn.net/kenneth_yu/article/details/78478356
https://zhuanlan.zhihu.com/p/25239682
https://zhuanlan.zhihu.com/p/36506567
https://antkillerfarm.github.io/drl/2019/06/19/DRL_4.html
https://www.cnblogs.com/pinard/p/10345762.html
人脸识别和神经风格转换
https://zhuanlan.zhihu.com/p/52709899
https://blog.csdn.net/sinat_27421407/article/details/80487441
https://yq.aliyun.com/articles/570174
https://alberthg.github.io/2018/04/12/deeplearning-ai-c4w4/
自然语言处理与词嵌入
https://blog.csdn.net/qq_39521554/article/details/86696202
https://blog.csdn.net/Hansry/article/details/80399054
https://alberthg.github.io/2019/01/12/deeplearning-ai-c5w2/http://wangxin123.com/2018/03/02/%E8%87%AA%E7%84%B6%E8%AF%AD%E8%A8%80%E5%A4%84%E7%90%86%E4%B8%8E%E8%AF%8D%E5%B5%8C%E5%85%A5/
https://zhuanlan.zhihu.com/p/26287104
循环序列模型
https://blog.csdn.net/sinat_33761963/article/details/80195636
https://blog.csdn.net/weixin_41043240/article/details/79415134
https://moluchase.github.io/2018/02/03/dl11/
https://zhuanlan.zhihu.com/p/53035761
https://zhuanlan.zhihu.com/p/42014018
卷积神经网络_实例探究
https://www.jianshu.com/p/fa101fb95a09
https://blog.csdn.net/qq_27806947/article/details/88088327
https://blog.csdn.net/qq_44806305/article/details/105119907https://blog.csdn.net/weixin_42234769/article/details/89852772?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task
pytorch深度学习框架入门与实践
https://zhuanlan.zhihu.com/p/31712507
https://github.com/chenyuntc/pytorch-book
https://cloud.tencent.com/developer/article/1094996
卷积神经网络
https://blog.csdn.net/rogerchen1983/article/details/90271393
https://blog.csdn.net/qq_41185868/article/details/79995732
AdaNet神经网络
https://blog.csdn.net/qq_41185868/article/details/84063488
基于单目图像来估计图像深度
https://blog.csdn.net/roslei/article/details/78813014
https://blog.csdn.net/jishijian7408/article/details/94881662
SENet
https://zhuanlan.zhihu.com/p/32702350
https://github.com/hujie-frank/SENet
Google人脸识别FaceNet原理分析
https://zhuanlan.zhihu.com/p/24837264
https://blog.csdn.net/stdcoutzyx/article/details/46687471
https://www.cnblogs.com/zyly/p/9703614.html
https://www.cnblogs.com/carle-09/p/10455484.html
https://bbs.huaweicloud.com/blogs/133648
随机森林原理解读
https://blog.csdn.net/wfei101/article/details/74840091
https://blog.csdn.net/y0367/article/details/51501780
https://zhuanlan.zhihu.com/p/54286825
https://cloud.tencent.com/developer/article/1387715
https://www.jiqizhixin.com/articles/2017-07-31-3
http://www.lipingjx.com/ai_artical/ailearning/5QW000.html
https://blog.csdn.net/v_JULY_v/article/details/7624837
https://zhuanlan.zhihu.com/p/31886934
https://cloud.tencent.com/developer/article/1594537
https://flashgene.com/archives/86454.html
https://zhuanlan.zhihu.com/p/90520307
https://zhuanlan.zhihu.com/p/36794802
https://snaildove.github.io/2018/10/02/get-started-XGBoost/
https://www.csuldw.com/2019/07/20/2019-07-20-xgboost-theory/
https://blog.csdn.net/w928485096/article/details/90107568
https://blog.csdn.net/matrix_zzl/article/details/78635221
https://ask.hellobi.com/article/6836
Mask RCNN原理分析
https://blog.csdn.net/ghw15221836342/article/details/80084861
https://blog.csdn.net/linolzhang/article/details/71774168
https://blog.csdn.net/jiongnima/article/details/79094159
https://blog.csdn.net/hnshahao/article/details/81231211
https://zhuanlan.zhihu.com/p/42745788
https://zhuanlan.zhihu.com/p/37998710
https://www.cnblogs.com/wangyong/p/9305347.html
https://www.cnblogs.com/wangyong/p/10614898.html
https://blog.csdn.net/accumulate_zhang/article/details/77542193
https://blog.csdn.net/yuanfu1998/article/details/81307665
https://www.bilibili.com/read/cv506824/
https://zhuanlan.zhihu.com/p/82185598
https://blog.csdn.net/WYR_try/article/details/90582693
https://blog.csdn.net/qinchao315/article/details/80950583
https://hongbb.top/2019/01/18/faster-rcnn/
https://zhuanlan.zhihu.com/p/80177088
https://blog.csdn.net/qq_38807688/article/details/84590717
https://blog.csdn.net/c20081052/article/details/80703896
https://github.com/Ewenwan/MVision/tree/master/CNN/MobileNet
https://www.yanxishe.com/columnDetail/17712
数据进行归一化为什么这么重要
https://blog.csdn.net/zenghaitao0128/article/details/78361038
https://blog.csdn.net/suv1234/article/details/72629459
https://www.jianshu.com/p/95a8f035c86c
https://zhuanlan.zhihu.com/p/40563426
https://blog.csdn.net/wfei101/article/details/78157723
https://blog.csdn.net/qq_16540387/article/details/81563807
https://cloud.tencent.com/developer/article/1052779
http://lanbing510.info/2017/08/28/YOLO-SSD.html
https://www.cnblogs.com/fariver/p/7347197.html
深度神经网络的量化与压缩
https://zhuanlan.zhihu.com/p/50938836
https://zhuanlan.zhihu.com/p/36051603
https://blog.csdn.net/zbgjhy88/article/details/80945528
https://www.jiqizhixin.com/articles/2018-06-01-11
https://blog.csdn.net/qq_21997625/article/details/88203343
https://antkillerfarm.github.io/dl%20acceleration/2019/07/22/DL_acceleration_4.html
正交信号:复数,但不复杂
http://www.chinadmd.com/file/u6oticasiip3oixie3truvzu_1.html
caffe入门教程1——Caffe代码层次:Blob、Layer、Net、Solver
https://blog.csdn.net/Tian_fourpieces/article/details/79397453
anaconda
Anaconda是一个免费开源的Python和R语言的发行版本,用于计算科学(数据科学、机器学习、大数据处理和预测分析),Anaconda致力于简化包管理和部署。
https://repo.continuum.io/archive/Anaconda3-5.1.0-Windows-x86_64.exe
caffe的solver中不同学习策略(lr_policy)分析及应用
https://blog.csdn.net/cuijyer/article/details/78195178
https://blog.csdn.net/chen1234520nnn/article/details/98870661
Caffe模型参数量(weights)计算
https://blog.csdn.net/FreeApe/article/details/71522174
https://blog.csdn.net/a8039974/article/details/77249703
Docker 的基本使用
https://yeyouluo.github.io/2017/11/11/docker-cmd/
https://www.runoob.com/docker/docker-image-usage.html
Caffe官方教程中译本
其他:
https://blog.csdn.net/FIELDOFFIER/article/details/44264715
https://blog.csdn.net/Leonis_v/article/details/50519811
https://blog.csdn.net/u010402786/article/details/50519922
https://blog.csdn.net/Xin_101/article/details/88767078
http://ibillxia.github.io/blog/2013/04/06/Convolutional-Neural-Networks/
支持向量机(SVM)
https://raw.githubusercontent.com/liuzheng712/Intro2SVM/master/Intro2SVM.pdf
https://blog.csdn.net/v_JULY_v/article/details/7624837
https://www.cnblogs.com/sddai/p/5723880.html
案例:
https://zhuanlan.zhihu.com/p/38597894
逻辑回归
逻辑回归 logistic regression 算法原理及优化
使用单层感知器神经网络(SLPNN)进行Logistic回归
机器学习课程:第2部分-SVM,感知器和Logistic回归
分类-1-逻辑回归(Logistic regression)、感知学习算法(perceptron learning algorithm)、牛顿迭代法
McCulloch-Pitts神经元—人类第一个生物神经元的数学模型
McCulloch-Pitts神经元与Perceptron模型
这里简要介绍一下CRF++使用的命令格式、参数调整、模板制作的基本过程。
https://zhuanlan.zhihu.com/p/39695509
AI知识图谱:机器学习、深度学习、数据分析、数据挖掘「附脑图」
【机器学习】机器学习知识图谱:传统学习、神经网络、深度学习、强化学习、对抗学习等
AI之math:人工智能概念之机器学习/深度学习中的数学基础知识图谱(最全)
- 点赞
- 收藏
- 关注作者
评论(0)