《Python人脸识别:从入门到工程实践》 ——3.3.2 噪声
【摘要】 本节书摘来自华章计算机《Python人脸识别:从入门到工程实践》 —— 书中第3章,第3.3.2节,作者是王天庆 。
3.3.2 噪声
我们在图3-5中已经看到经过噪声干扰和未经过噪声干扰的两幅图片的差异。经过噪声干扰的图像令我们难以获取图片所要表达的原始信息,使得图像所表达信息的确定程度减少,也就是所谓的信息熵增大。
而在实际生活中,通过图像采集设备获取到的图片也或多或少会引入噪声,这主要是由摄像机等图像采集设备的感光元件受到干扰产生的噪声表现在图像上而形成的,主要表现为黑白杂点等。
图像中随机出现的黑白杂点称为椒盐噪声,“椒”代表黑色,“盐”代表白色,故而用椒盐噪声这个概念来表示图像中存在的黑白杂点,其在图片中出现的位置是随机的。而图像中也可能会随机出现某些颜色的改变。造成此类杂点最典型的就是高斯噪声,这是由于在原图片的基础上叠加了高斯噪声而造成的。
所谓高斯噪声是指图像叠加的噪声概率密度服从高斯分布,也就是正态分布。这是自然界中最为常见的一种噪声类别,例如夜晚通过照相机拍照获得的照片就可能存在该类噪声。
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)