漫谈LiteOS-LiteOS SDK支持RISC-V架构
1 RISC-V架构简介
RISC-V是一个基于精简指令集(RISC)原则的开源指令集架构(ISA)。
与大多数指令集相比,RISC-V指令集可以自由地用于任何目的,允许任何人设计、制造和销售RISC-V芯片和软件而不必支付给任何公司专利费。RISC-V指令集的设计考虑了小型、快速、低功耗的现实情况来实做,但并没有对特定的微架构做过度的设计。
RISC-V的Spec文档可以在RISC-C官网https://riscv.org/specifications/ 上下载。主要看riscv-privileged.pdf和riscv-spec.pdf。
主要精读的内容包括:
RV32ICM Instruction Set
I:RV32I Base Integer Instruction Set
C:Standard Extension for Compressed Instructions
M:Standard Extension for Integer Multiplication and Division
Privilege Levels
Control and Status Registers (CSRs)
Machine-Level ISA
在了解通用的RV32架构之后,由于RV32是开源的ISA架构,所以实际芯片都会在此基础上做一些定制化,因此需要再读一下芯片手册,LiteOS的RISC-V架构支持使用的芯片是GD32VF103,请下载GD32VF103 的Spec进行阅览。
2 LiteOS支持一种处理器
RTOS支持一种新的处理器架构,最主要的修改有以下几个方面:
1.启动汇编的适配
2.适配系统调度汇编
3.Tick的适配
4.根据芯片设置系统相关参数
5.适配中断管理模块
6.编译链接脚本的调整
那么,对应到LiteOS,主要修改的目录和文件是:
LiteOS_Lab\iot_link\os\liteos\arch\riscv\src中
los_dispatch.S
los_hw.c
los_hw_tick.c
los_hwi.c
和对应芯片target目录下的start.S启动汇编以及ld链接脚本。
步骤如下:
1. start.S
A. 和RISC-V的异常中断处理密切相关,注意向量表的对齐
vector_base: j _start .align 2 .word 0 .word 0 .word osInterrupt #eclic_msip_handler .word 0 .word 0 .word 0 .word osInterrupt #eclic_mtip_handler
B. 设置中断,异常等的入口地址
_start0800: /* Set the the NMI base to share with mtvec by setting CSR_MMISC_CTL */ li t0, 0x200 csrs CSR_MMISC_CTL, t0 /* Intial the mtvt*/ la t0, vector_base csrw CSR_MTVT, t0 /* Intial the mtvt2 and enable it*/ la t0, irq_entry csrw CSR_MTVT2, t0 csrs CSR_MTVT2, 0x1 /* Intial the CSR MTVEC for the Trap ane NMI base addr*/ la t0, trap_entry csrw CSR_MTVEC, t0
C.设置gp,sp,初始化data和bss section,然后跳转到main函数
.option push .option norelax la gp, __global_pointer$ .option pop la sp, _sp /* Load data section */ la a0, _data_lma la a1, _data la a2, _edata bgeu a1, a2, 2f 1: lw t0, (a0) sw t0, (a1) addi a0, a0, 4 addi a1, a1, 4 bltu a1, a2, 1b 2: /* Clear bss section */ la a0, __bss_start la a1, _end bgeu a0, a1, 2f 1: sw zero, (a0) addi a0, a0, 4 bltu a0, a1, 1b
2. 适配系统调度汇编(los_dispatch.s),主要修改函数LOS_StartToRun、LOS_IntLock、LOS_IntUnLock、TaskSwitch等;
任务栈的设计,在osTskStackInit中针对RISC-V的寄存器的定义,做出context的设计:
pstContext->ra = (UINT32)osTaskExit; pstContext->sp = 0x02020202L; pstContext->gp = 0x03030303L; pstContext->tp = 0x04040404L; pstContext->t0 = 0x05050505L; pstContext->t1 = 0x06060606L; pstContext->t2 = 0x07070707L; pstContext->s0 = 0x08080808L; pstContext->s1 = 0x09090909L; pstContext->a0 = pstTaskCB->uwTaskID; //a0 first argument pstContext->a1 = 0x11111111L; pstContext->a2 = 0x12121212L; pstContext->a3 = 0x13131313L; pstContext->a4 = 0x14141414L; pstContext->a5 = 0x15151515L; pstContext->a6 = 0x16161616L; pstContext->a7 = 0x17171717L; pstContext->s2 = 0x18181818L; pstContext->s3 = 0x19191919L; pstContext->s4 = 0x20202020L; pstContext->s5 = 0x21212121L; pstContext->s6 = 0x22222222L; pstContext->s7 = 0x23232323L; pstContext->s8 = 0x24242424L; pstContext->s9 = 0x25252525L; pstContext->s10 = 0x26262626L; pstContext->s11 = 0x27272727L; pstContext->t3 = 0x28282828L; pstContext->t4 = 0x29292929L; pstContext->t5 = 0x30303030L; pstContext->t6 = 0x31313131L; pstContext->mepc =(UINT32)osTaskEntry;
LOS_IntLock的实现:
LOS_IntLock: csrr a0, mstatus li t0, 0x08 csrrc zero, mstatus, t0 ret
LOS_IntUnLock的实现:
LOS_IntUnLock: csrr a0, mstatus li t0, 0x08 csrrs zero, mstatus, t0 ret
TaskSwitch的实现:
TaskSwitch: la t0, g_stLosTask lw t1, 0(t0) csrr t2, mscratch sw t2, 0(t1) //Clear the task running bit of pstRunTask. la t0, g_stLosTask lw t1, (t0) lb t2, 0x4(t1) andi t2, t2, OS_TASK_STATUS_NOT_RUNNING sb t2, 0x4(t1) //copy pstNewTask into pstRunTask la t0, g_stLosTask lw t1, 0x4(t0) sw t1, 0x0(t0) //set the task running bit=1 lh t2, 0x4(t1) ori t2, t2, OS_TASK_STATUS_RUNNING sh t2, 0x4(t1) //retireve stack pointer lw sp, (t1) //retrieve the address at which exception happened lw t0, 31 * 4(sp) csrw mepc, t0 li t0, 0x1800 csrs mstatus, t0 //retrieve the registers lw ra, 0 * 4(sp) lw t0, 4 * 4(sp) lw t1, 5 * 4(sp) lw t2, 6 * 4(sp) lw s0, 7 * 4(sp) lw s1, 8 * 4(sp) lw a0, 9 * 4(sp) lw a1, 10 * 4(sp) lw a2, 11 * 4(sp) lw a3, 12 * 4(sp) lw a4, 13 * 4(sp) lw a5, 14 * 4(sp) lw a6, 15 * 4(sp) lw a7, 16 * 4(sp) lw s2, 17 * 4(sp) lw s3, 18 * 4(sp) lw s4, 19 * 4(sp) lw s5, 20 * 4(sp) lw s6, 21 * 4(sp) lw s7, 22 * 4(sp) lw s8, 23 * 4(sp) lw s9, 24 * 4(sp) lw s10, 25 * 4(sp) lw s11, 26 * 4(sp) lw t3, 27 * 4(sp) lw t4, 28 * 4(sp) lw t5, 29 * 4(sp) lw t6, 30 * 4(sp) addi sp, sp, 4 * 32 mret
3. Tick的适配
osTickStart的启动:
MTIMECMP和MTIME寄存器的设定,TIMER中断的使能,TIMER中断处理函数的注册
LITE_OS_SEC_TEXT_INIT UINT32 osTickStart(VOID) { UINT32 uwRet; g_uwCyclesPerTick = OS_SYS_CLOCK / LOSCFG_BASE_CORE_TICK_PER_SECOND; g_ullTickCount = 0; *(UINT64 *)(TIMER_CTRL_ADDR + TIMER_MTIMECMP) = OS_SYS_CLOCK / LOSCFG_BASE_CORE_TICK_PER_SECOND / 4; *(UINT64 *)(TIMER_CTRL_ADDR + TIMER_MTIME) = 0; eclic_irq_enable(CLIC_INT_TMR, 1, 1); LOS_HwiCreate(CLIC_INT_TMR, 3, 0, eclic_mtip_handler, 0); g_bSysTickStart = TRUE; return LOS_OK; }
4. 根据芯片设置系统相关参数(时钟频率,tick中断配置,los_config.h系统参数配置(内存池大小、信号量、队列、互斥锁,软件定时器数量等));
根据实际开发板的资源和实际使用需求,配置target_config.h的参数和选项。
5. 适配中断管理模块,LiteOS的中断向量表由m_pstHwiForm[OS_VECTOR_CNT]数组管理,需要根据芯片配置中断使能,重定向等;
A.在los_hwi.c和los_hwi.h中根据实际芯片的中断向量数目和驱动做一些调整
B.在entry.S中设计irq_entry的处理,需要注意的是需要单独在irq stack中处理中断嵌套:
irq_entry: // -------------> This label will be set to MTVT2 register // Allocate the stack space SAVE_CONTEXT// Save 16 regs //------This special CSR read operation, which is actually use mcause as operand to directly store it to memory csrrwi x0, CSR_PUSHMCAUSE, 17 //------This special CSR read operation, which is actually use mepc as operand to directly store it to memory csrrwi x0, CSR_PUSHMEPC, 18 //------This special CSR read operation, which is actually use Msubm as operand to directly store it to memory csrrwi x0, CSR_PUSHMSUBM, 19 la t0, g_int_cnt lw t1, 0(t0) addi t1, t1, 1 sw t1, 0(t0) li t2, 1 bgtu t1,t2,service_loop csrw mscratch, sp la sp, __irq_stack_top
service_loop:
//------This special CSR read/write operation, which is actually Claim the CLIC to find its pending highest // ID, if the ID is not 0, then automatically enable the mstatus.MIE, and jump to its vector-entry-label, and // update the link register csrrw ra, CSR_JALMNXTI, ra //RESTORE_CONTEXT_EXCPT_X5 la t0, g_int_cnt lw t1, 0(t0) addi t1, t1, -1 sw t1, 0(t0) bnez t1, _rfi csrr sp, mscratch DISABLE_MIE # Disable interrupts LOAD x5, 19*REGBYTES(sp) csrw CSR_MSUBM, x5 LOAD x5, 18*REGBYTES(sp) csrw CSR_MEPC, x5 LOAD x5, 17*REGBYTES(sp) csrw CSR_MCAUSE, x5 la t0, g_usLosTaskLock lw t1, 0(t0) bnez t1, _rfi la t0, g_stLosTask lw t1, 0x4(t0) lw t2, 0x0(t0) beq t1, t2, _rfi RESTORE_CONTEXT push_reg csrr t0, mepc sw t0, 31*4(sp) csrw mscratch, sp j TaskSwitch
_rfi:
RESTORE_CONTEXT // Return to regular code mret
6. 编译链接脚本的调整
几个关键的设置:
irq stack内存区域:
__stack_size = DEFINED(__stack_size) ? __stack_size : 2K; __irq_stack_size = DEFINED(__irq_stack_size) ? __irq_stack_size : 2K; __heap_size = DEFINED(__heap_size) ? __heap_size : 0xc00;
gp初始值的设定:gp用于代码的优化,因为请合理选择__global_pointer的初值:
PROVIDE( __global_pointer$ = . + 0x800);
堆栈的设定:
.stack : ALIGN(0x10) { . += __stack_size; PROVIDE( _sp = . ); . = ALIGN(0x10); PROVIDE( __irq_stack_bottom = . ); . += __irq_stack_size; PROVIDE( __irq_stack_top = . ); } >ram AT>ram .heap : ALIGN(0x10) { PROVIDE( __los_heap_addr_start__ = . ); . = __heap_size; . = __heap_size == 0 ? 0 : ORIGIN(ram) + LENGTH(ram); PROVIDE( __los_heap_addr_end__ = . ); PROVIDE( _heap_end = . ); } >ram AT>ram
主要的步骤已经整体讲述了,顺利移植的主要前提条件是对RISC-V处理器架构的全面理解和LiteOS任务调度的设计,所以再次提醒精读riscv-privileged.pdf和riscv-spec.pdf的相关章节。在移植过程中,会遇到很多问题,建议使用IoT Studio的开发调试环境,方便的进行汇编级的单步调试,另外把串口驱动和printf打印调通,也是一种较重要的调试手段。
- 点赞
- 收藏
- 关注作者
评论(0)