《机器学习:算法视角(原书第2版)》 —3 拓展阅读
拓展阅读
如果你对人类大脑的工作原理感兴趣,那么很多流行的科普书籍都会符合你的胃口,包括:
●Susan Greenfield.The Human Brain: A Guided Tour.Orion, London, UK, 2001.
●S.Aamodt and S.Wang.Welcome to Your Brain: Why You Lose Your Car Keys but Never Forget How to Drive and Other Puzzles of Everyday Life.Bloomsbury, London, UK, 2008.
如果你想从研究的角度更进一步了解大脑,那么以下书籍都是很好的入门读物(特别是开头的“路线图”):
●Michael A.Arbib, editor.The Handbook of Brain Theory and Neural Networks, 2nd edition, MIT Press, Cambridge, MA, USA, 2002.
McCulloch和Pitts的原始论文如下:
●W.S.McCulloch and W.Pitts.A logical calculus of ideas imminent in nervous activity.Bulletin of Mathematics Biophysics, 5:115-133, 1943.
关于基于神经网络的学习,下面这本书起到了很大的推动作用:
●V.Braitenberg.Vehicles: Experiments in Synthetic Psychology.MIT Press, Cambridge, MA, USA, 1984.
如果你对该领域的历史感兴趣,那么关于感知器的原始论文,以及讲解线性可分性的条件的书(一些人认为它对阻碍该领域发展20年负有责任),现在阅读起来仍然是很有趣的。另一篇可能有吸引力的论文是Widrow和Lehr写的评论文章,它总结了一些有深远影响的工作:
●F.Rosenblatt.The Perceptron: A probabilistic model for information storage and organization in the brain.Psychological Review, 65(6):386-408, 1958.
●M.L.Minsky and S.A.Papert.Perceptrons: An Introduction to Computational Geometry.MIT Press, Cambridge MA, 1969.
●B.Widrow and M.A.Lehr.30 years of adaptive neural networks: Perceptron, madaline, and backpropagation.Proceedings of the IEEE, 78(9):1415-1442, 1990.
下面的教科书涵盖了相同的素材,尽管视角有所不同:
●Chapter 5 of R.O.Duda, P.E.Hart, and D.G.Stork.Pattern Classification, 2nd edition, Wiley-Interscience, New York, USA, 2001.
●Sections 3.1-3.3 of T.Hastie, R.Tibshirani, and J.Friedman.The Elements of Statistical Learning, 2nd edition, Springer, Berlin, Germany, 2008.
- 点赞
- 收藏
- 关注作者
评论(0)