利用Python开发智能阅卷系统

举报
Joey啊 发表于 2019/12/09 16:37:17 2019/12/09
【摘要】 随着现代图像处理和人工智能技术的快速发展,不少学者尝试讲CV应用到教学领域,能够代替老师去阅卷,将老师从繁杂劳累的阅卷中解放出来,从而进一步有效的推动教学质量上一个台阶。传统的人工阅卷,工作繁琐,效率低下,进度难以控制且容易出现试卷遗漏未改、登分失误等现象。现代的“机器阅卷”,工作便捷、效率高、易操作,只需要一个相机(手机),拍照即可获取成绩,可以导入Excel表格便于存档管理。下面我们从代...

随着现代图像处理和人工智能技术的快速发展,不少学者尝试讲CV应用到教学领域,能够代替老师去阅卷,将老师从繁杂劳累的阅卷中解放出来,从而进一步有效的推动教学质量上一个台阶。

传统的人工阅卷,工作繁琐,效率低下,进度难以控制且容易出现试卷遗漏未改、登分失误等现象。

image.png

现代的“机器阅卷”,工作便捷、效率高、易操作,只需要一个相机(手机),拍照即可获取成绩,可以导入Excel表格便于存档管理。

image.png

下面我们从代码实现的角度来解释一下我们这个简易答题卡识别系统的工作原理。 第一步,导入工具包及一系列的预处理

import numpy as npimport argparseimport imutilsimport cv2# 设置参数ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default="test_01.png")
args = vars(ap.parse_args())# 正确答案ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1} #def order_points(pts):
   # 一共4个坐标点
   rect = np.zeros((4, 2), dtype = "float32")   # 按顺序找到对应坐标0,1,2,3分别是 左上,右上,右下,左下
   # 计算左上,右下
   s = pts.sum(axis = 1)
   rect[0] = pts[np.argmin(s)]
   rect[2] = pts[np.argmax(s)]   # 计算右上和左下
   diff = np.diff(pts, axis = 1)
   rect[1] = pts[np.argmin(diff)]
   rect[3] = pts[np.argmax(diff)]   return rectdef four_point_transform(image, pts):
   # 获取输入坐标点
   rect = order_points(pts)
   (tl, tr, br, bl) = rect   # 计算输入的w和h值
   widthA = np.sqrt(((br[0]-bl[0])** 2) + ((br[1]-bl[1])**2))
   widthB = np.sqrt(((tr[0] -tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
   maxWidth = max(int(widthA), int(widthB))
   heightA = np.sqrt(((tr[0]-br[0])**2)+((tr[1]-br[1])**2))
   heightB = np.sqrt(((tl[0]-bl[0])**2)+((tl[1]-bl[1])**2))
   maxHeight = max(int(heightA), int(heightB))   # 变换后对应坐标位置
   dst = np.array([
      [0, 0],
      [maxWidth - 1, 0],
      [maxWidth - 1, maxHeight - 1],
      [0, maxHeight - 1]], dtype = "float32")   # 计算变换矩阵
   M = cv2.getPerspectiveTransform(rect, dst)
   warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))   return warped # 返回变换后结果def sort_contours(cnts, method="left-to-right"):
    reverse = False
    i = 0
    if method == "right-to-left" or method == "bottom-to-top":
        reverse = True
    if method == "top-to-bottom" or method == "bottom-to-top":
        i = 1
    boundingBoxes = [cv2.boundingRect(c) for c in cnts]
    (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
                                        key=lambda b: b[1][i], reverse=reverse))    return cnts, boundingBoxesdef cv_show(name,img):
        cv2.imshow(name, img)
        cv2.waitKey(0)
        cv2.destroyAllWindows()  


image = cv2.imread(args["image"])
contours_img = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(blurred, 75, 200)# 轮廓检测cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
   cv2.CHAIN_APPROX_SIMPLE)[1]
cv2.drawContours(contours_img,cnts,-1,(0,0,255),3) 
docCnt = None# 确保检测到了if len(cnts) > 0:   # 根据轮廓大小进行排序
   cnts = sorted(cnts, key=cv2.contourArea, reverse=True)   for c in cnts:   # 遍历每一个轮廓
      # 近似
      peri = cv2.arcLength(c, True)
      approx = cv2.approxPolyDP(c, 0.02 * peri, True)      # 准备做透视变换
      if len(approx) == 4:
         docCnt = approx         break# 执行透视变换warped = four_point_transform(gray, docCnt.reshape(4, 2))

thresh = cv2.threshold(warped, 0, 255,
   cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] 
thresh_Contours = thresh.copy()# 找到每一个圆圈轮廓cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
   cv2.CHAIN_APPROX_SIMPLE)[1]
cv2.drawContours(thresh_Contours,cnts,-1,(0,0,255),3) 
questionCnts = []for c in cnts:# 遍历
   # 计算比例和大小
   (x, y, w, h) = cv2.boundingRect(c)
   ar = w / float(h)   # 根据实际情况指定标准
   if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:
      questionCnts.append(c)# 按照从上到下进行排序questionCnts = sort_contours(questionCnts,
   method="top-to-bottom")[0]
correct = 0# 每排有5个选项for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):
   cnts = sort_contours(questionCnts[i:i + 5])[0]
   bubbled = None
   for (j, c) in enumerate(cnts):  # 遍历每一个结果
      # 使用mask来判断结果
      mask = np.zeros(thresh.shape, dtype="uint8")
      cv2.drawContours(mask, [c], -1, 255, -1) #-1表示填充
      # 通过计算非零点数量来算是否选择这个答案
      mask = cv2.bitwise_and(thresh, thresh, mask=mask)
      total = cv2.countNonZero(mask)      # 通过阈值判断
      if bubbled is None or total > bubbled[0]:
         bubbled = (total, j)   # 第二步,与正确答案进行对比
   color = (0, 0, 255)
   k = ANSWER_KEY[q]   # 判断正确
   if k == bubbled[1]:
      color = (0, 255, 0)
      correct += 1
   cv2.drawContours(warped, [cnts[k]], -1, color, 3) #绘图

   #正确率的文本显示score = (correct / 5.0) * 100print("[INFO] score: {:.2f}%".format(score))
cv2.putText(warped, "{:.2f}%".format(score), (10, 30),
   cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
cv2.imshow("Input", image)
cv2.imshow("Output", warped)
cv2.waitKey(0)

最终实现的效果如下:

image.png

image.png


【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。