《深入理解AutoML和AutoDL:构建自动化机器学习与深度学习平台》 —2.3 现有AutoML平台产品

华章计算机 发表于 2019/11/15 15:30:12 2019/11/15
【摘要】 本节书摘来自华章计算机《深入理解AutoML和AutoDL:构建自动化机器学习与深度学习平台》一书中第2章,第2.3.1节,作者是王健宗 瞿晓阳  。

2.3 现有AutoML平台产品

2.3.1 谷歌Cloud AutoML

1.简介

Cloud AutoML(https://cloud.google.com/automl)是一套机器学习产品,通过利用Google最先进的元学习、迁移学习和神经架构搜索技术,使机器学习专业知识有限的开发人员也能根据业务需求训练高质量模型。Cloud AutoML主要提供以下3个领域的AutoML服务:图像分类、文本分类以及机器翻译。在图像分类领域,谷歌提供了大量标注良好的人类图像供开发者使用,同时提供了标注工具允许开发者自行对图像进行标注。

2.使用方式

谷歌Cloud AutoML系统提供了图像用户界面,以及Python API、Java API和Node.js API等使用方式。

首先来看看图形用户界面(见图2-7),它按照数据准备、训练、评估、预测等步骤进行组织,使用者只需要按照规定执行一步就可以完成整个过程。

 image.png

图2-7 Cloud AutoML图形用户界面

再来看看通过API的方式进行接口调用,以Python为例,如图2-8所示。

 image.png

图2-8 Cloud AutoML的API调用

使用者可以根据自身的习惯和需要,选择图形界面方式或者API方式并使用自己熟悉的语言去完成整个流程,从而保证该平台的通用性。从这个角度而言,该平台既可以有效服务入门级使用者,也可以服务专家级算法工程师并与大型项目对接。

Cloud AutoML中重要的一环Cloud AutoML Vision代表了深度学习去专业化的关键一步。企业不再需要招聘人工智能专家来训练深度学习模型,只需要有简单基础的人通过Web图像用户界面上传几十个示例图像,点击一个按钮即可完成整个深度神经网络的构建与训练,同时完成后可以立即部署于谷歌云上进入生产环境。

3.迁移学习与元学习的运用

Cloud AutoML利用了元学习与迁移学习。元学习与迁移学习可以有效利用过去的训练经验与训练数据,这意味着用户不再像过往那样需要提供海量的数据进行模型训练,而只需要提供较少的数据就可以完成一个图像分类器的训练并应用于特定场景。这背后是谷歌大量的基础训练数据源和训练经验与记录的支撑。

另外,迁移学习与元学习的应用涉及用户数据隐私与平台性能的权衡问题。如果Cloud AutoML可以将用户的数据与训练经验都积累起来并提供给其他用户使用,那么该平台的底层数据积累便会越来越雄厚,其使用效果也会越来越好。但是,大多数客户都不会希望自己的数据被泄漏,因此上述的美好愿景也不一定能实现。


【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件至:cloudbbs@huaweicloud.com进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容。
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。