《深入理解AutoML和AutoDL:构建自动化机器学习与深度学习平台》 —2.2.2 AutoML的意义和作用

华章计算机 发表于 2019/11/15 15:28:46 2019/11/15
【摘要】 本节书摘来自华章计算机《深入理解AutoML和AutoDL:构建自动化机器学习与深度学习平台》一书中第2章,第2.2.2节,作者是王健宗 瞿晓阳  。

2.2.2 AutoML的意义和作用

21世纪是一个信息的时代,各行各业都面临着一个同样的问题,那就是需要从大量的信息中筛选出有用的信息并将其转化为价值。随着机器学习2.0的提出,自动化成为了未来机器学习发展的一个方向。如图2-5所示,各行各业都涉及机器学习,机器学习已经融入我们生活的方方面面,比如金融、教育、医疗、信息产业等领域。

对于一个机器学习的新人来说,如果他想使用机器学习,则会遇到很多的障碍,也会受到很多的限制,例如:该怎样处理数据、如何选择模型、使用怎样的参数、模型效果不好该如何优化等。AutoML使得机器学习大众化,让这些连专业术语都不懂的人,也可以使用机器学习。他们只需要提供数据,AutoML便会自动得出最佳的解决方案。而对于有一定机器学习基础的人来说,则可以自己选择模型、参数,然后让AutoML帮助训练模型。

AutoML带来的不仅仅是自动化的算法选择、超参数优化和神经网络架构搜索,它还涉及机器学习过程的每一步。从数据预处理方面,如数据转换、数据校验、数据分割,到模型方面,如超参数优化、模型选择、集成学习、自动化特征工程等,都可以通过AutoML来完成,从而减少算法工程师的工作量,使他们的工作效率得到进一步提升。

图2-6所示为2018年各人工智能行业的资金投入量,其中机器学习领域的资金投入量最大,说明了机器学习对于现在的人工智能的重要性。在其他领域,自然语言处理、计算机视觉、智能机器人、语音识别等,资金投入量也不容小觑。AutoML可以融合上述方面,实现自动化。目前,人工智能领域也确实是朝着这个方向发展,将各个行业融合在一起,只需要一个AutoML的服务器,即可实现各个领域的融合,方便用户的使用,使其更快地融入我们的现实生活,方便我们的生活。

image.png

(1)AutoML解决了人工智能行业人才缺口的瓶颈

对于急速发展的人工智能领域来说,人才的培养显得有些不足。人工智能的发展时时刻刻都在变化,而培养一批该行业的专业人员通常需要几年的时间。以青年人群为例,从上大学开始,学校才会根据专业对他们进行培养。如果选择计算机专业,本科教育通常只会让他们了解到计算机的基础知识,使其具备基本的编程能力;通常到研究生阶段,才会接触到机器学习等复杂的人工智能。这就需要至少6年的时间才能培养出一批机器学习领域的从业人员。这样长的人才培养周期是无法跟上人工智能行业快速发展的脚步的,而AutoML就很好地解决了这一问题。AutoML可以提供自动化的服务,对于曾经需要人工参与的数据处理、特征处理、特征选择、模型选择、模型参数的配置、模型训练和评估等方面,实现了全自动,仅凭机器就可以独立完成这一系列工作,不需要人工干预,从而减少了人力资源的浪费,解决了人才紧缺的问题。

 image.png

图2-6 2018年各人工智能行业资金投入量

但是,这就涉及另一个问题了,既然机器可以完成大部分的工作,是否会造成相关专业人员的失业问题呢?其实,这个答案必然是否定的,AutoML可以解决人才紧缺的状况,但是并不代表它能取代专业人士。现有的AutoML平台虽然可以完成这些步骤的自动化处理,但是其中的规则仍然需要人工设定,也就是说,专业人士并不会面临失业的困境,而是要做更高端的工作。

(2)AutoML可以降低机器学习的门槛,使AI平民化

前文已经提到过很多次,机器学习的自动化可以降低机器学习的入门门槛。无论是机器学习新人、机器学习行业从业者,还是机器学习行业专家,都可以很好地适应AutoML,并使用它提供的服务。对于机器学习新人来说,只需要提供数据集上传至AutoML服务器,即可得到预测结果;对于机器学习行业的从业者而言,可以自主选择其中的参数;对于机器学习行业专家来说,可以在AutoML平台设置更多的参数,或者进一步研发AutoML。

(3)AutoML可以扩大AI应用普及率,促进传统行业变革

AutoML可以涉及图像识别、翻译、自然语言处理等多种AI技术与产品。以自然语言处理为例,比如一个小的电商网站想对收集到的大量用户评价进行分析,了解这些评价是正面的还是负面的,以及提到了哪方面的问题。从前需要人工进行标注,现在用AutoML自然语言处理,就可以很简单地训练一个属于自己的模型,自动化地做标注和分析。

如今,AI技术的普及和发展,使得各个行业都逐步意识到AI技术对于产业、产品方面的优化作用。但是,作为金融、制造、消费、医疗、教育等传统企业,从无到有应用AI的成本往往不低,使得很多企业虽然有着需求但对于应用AI望而却步。

AutoML作为这类问题的解决方案,使得越来越多的科技企业开始研发AutoML平台,目的就是为不懂技术的传统企业提供使用AutoML技术的捷径,从而达到人人皆可用AI的局面。AutoML作为一个新的AI研究方法,扩展了AI研究能够到达的边界,然后又在其上构建了AutoML的应用平台及产品,让AI的应用得到了较为有效的扩展,让更多行业都可以用AI解决现实世界中的问题。


【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件至:cloudbbs@huaweicloud.com进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容。
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。