漫画:如何破解MD5算法?
在之前的漫画中,我们介绍了MD5算法的基本概念和底层原理,没看过的小伙伴们可以点击下面的链接:
这一次,我们来讲解如何破解MD5算法。
设MD5的哈希函数是H(X),那么:
H(A) = M
H(B) = M
任意一个B即为破解结果。
B有可能等于A,也可能不等于A。
用一个形象的说法,A和B的MD5结果“殊途同归”。
MD5碰撞通常用于登陆密码的破解。应用系统的数据库中存储的用户密码通常都是原密码的MD5哈希值,每当用户登录时,验签过程如下:
如果我们得到了用户ABC的密码哈希值E10ADC3949BA59ABBE56E057F20F883E,并不需要还原出原密码123456,只需要“碰撞”出另一个原文654321(只是举例)即可。登录时,完全可以使用654321作为登陆密码,欺骗过应用系统的验签。
暴力枚举法
字典法
彩虹表法
H(X):生成信息摘要的哈希函数,比如MD5,比如SHA256。
R(X):从信息摘要转换成另一个字符串的衰减函数(Reduce)。其中R(X)的定义域是H(X)的值域,R(X)的值域是H(X)的定义域。但要注意的是,R(X)并非H(X)的反函数。
通过交替运算H和R若干次,可以形成一个原文和哈希值的链条。假设原文是aaaaaa,哈希值长度32bit,那么哈希链表就是下面的样子:
这个链条有多长呢?假设H(X)和R(X)的交替重复K次,那么链条长度就是2K+1。同时,我们只需把链表的首段和末端存入哈希表中:
给定信息摘要:920ECF10
如何得到原文呢?只需进行R(X)运算:
R(920ECF10) = kiebgt
查询哈希表可以找到末端kiebgt对应的首端是aaaaaa,因此摘要920ECF10的原文“极有可能”在aaaaaa到kiebgt的这个链条当中。
接下来从aaaaaa开始,重新交替运算R(X)与H(X),看一看摘要值920ECF10是否是其中一次H(X)的结果。从链条看来,答案是肯定的,因此920ECF10的原文就是920ECF10的前置节点sgfnyd。
需要补充的是,如果给定的摘要值经过一次R(X)运算,结果在哈希表中找不到,可以继续交替H(X)R(X)直到第K次为止。
给定信息摘要:FB107E70
经过多次R(X),H(X)运算,得到结果kiebgt
通过哈希表查找末端kiebgt,可以找出首端aaaaaa
但是,FB107E70并不在aaaaaa到kiebgt的哈希链条当中,这就是R(X)的碰撞造成的。
这个问题看似没什么影响,既然找不到就重新生成一组首尾映射即可。但是想象一下,当K值较大的时候,哈希链很长,一旦两条不同的哈希链在某个节点出现碰撞,后面所有的明文和哈希值全都变成了一毛一样的值。
这样造成的后果就是冗余存储。原本两条哈希链可以存储 2K个映射,由于重复,真正存储的映射数量不足2K。
2004年,王小云教授提出了非常高效的MD5碰撞方法。
2009年,冯登国、谢涛利用差分攻击,将MD5的碰撞算法复杂度进一步降低。
几点补充:
对于单机来说,暴力枚举法的时间成本很高,字典法的空间成本很高。但是利用分布式计算和分布式存储,仍然可以有效破解MD5算法。因此这两种方法同样***客们广泛使用。
本文转载自微信公众号【java学习之道】。
- 点赞
- 收藏
- 关注作者
评论(0)