漫画算法:找出缺失的整数

举报
feichaiyu 发表于 2019/10/24 17:12:52 2019/10/24
【摘要】 小灰一边回忆一边讲述起当时面试的情景......题目:一个无序数组里有99个不重复正整数,范围从1到100,唯独缺少一个整数。如何找出这个缺失的整数?解法一:创建一个HashMap,以1到100为键,值都是0 。然后遍历整个数组,每读到一个整数,就找到HashMap当中对应的键,让其值加一。由于数组中缺少一个整数,最终一定有99个键值等于1, 剩下一个键值等于0。遍历修改后的HashMap,...

1.jpg

2.jpg

3.jpg

4.jpg

小灰一边回忆一边讲述起当时面试的情景......

5.jpg

6.jpg

7.jpg

题目:一个无序数组里有99个不重复正整数,范围从1到100,唯独缺少一个整数。如何找出这个缺失的整数?

8.jpg

9.jpg

解法一:

创建一个HashMap,以1到100为键,值都是0 。然后遍历整个数组,每读到一个整数,就找到HashMap当中对应的键,让其值加一。

由于数组中缺少一个整数,最终一定有99个键值等于1, 剩下一个键值等于0。遍历修改后的HashMap,找到这个值为0的键。

假设数组长度是N,那么该解法的时间复杂度是O(1),空间复杂度是O(N)。

10.jpg

11.jpg

12.jpg

解法二:

先把数组元素进行排序,然后遍历数组,要么有其中两个相邻元素之间的差不是1,要么缺失的整数是1或100。

假设数组长度是N,如果用时间复杂度为O(N*LogN)的排序算法进行排序,那么该解法的时间复杂度是O(N*LogN),空间复杂度是O(1)。

13.jpg

14.jpg

15.jpg

解法三:

很简单也很高效的方法,先算出1+2+3....+100的合,然后依次减去数组里的元素,最后得到的差,就是唯一缺失的整数。

假设数组长度是N,那么该解法的时间复杂度是O(N),空间复杂度是O(1)。

16.jpg

题目扩展:一个无序数组里有若干个正整数,范围从1到100,其中99个整数都出现了偶数次,只有一个整数出现了奇数次(比如1,1,2,2,3,3,4,5,5),如何找到这个出现奇数次的整数?

17.jpg

18.jpg

19.jpg

20.jpg

21.jpg

解法:

遍历整个数组,依次做异或运算。由于异或在位运算时相同为0,不同为1,因此所有出现偶数次的整数都会相互抵消变成0,只有唯一出现奇数次的整数会被留下。

假设数组长度是N,那么该解法的时间复杂度是O(N),空间复杂度是O(1)。

22.jpg

题目第二次扩展:一个无序数组里有若干个正整数,范围从1到100,其中98个整数都出现了偶数次,只有两个整数出现了奇数次(比如1,1,2,2,3,4,5,5),如何找到这个出现奇数次的整数?

23.jpg

24.jpg

25.jpg

26.jpg

解法:

遍历整个数组,依次做异或运算。由于数组存在两个出现奇数次的整数,所以最终异或的结果,等同于这两个整数的异或结果。这个结果中,至少会有一个二进制位是1(如果都是0,说明两个数相等,和题目不符)。

举个例子,如果最终异或的结果是5,转换成二进制是00000101。此时我们可以选择任意一个是1的二进制位来分析,比如末位。把两个奇数次出现的整数命名为A和B,如果末位是1,说明A和B转为二进制的末位不同,必定其中一个整数的末位是1,另一个整数的末位是0。

根据这个结论,我们可以把原数组按照二进制的末位不同,分成两部分,一部分的末位是1,一部分的末位是0。由于A和B的末位不同,所以A在其中一部分,B在其中一部分,绝不会出现A和B在同一部分,另一部分没有的情况。

这样一来就简单了,我们的问题又回归到了上一题的情况,按照原先的异或解法,从每一部分中找出唯一的奇数次整数即可。

假设数组长度是N,那么该解法的时间复杂度是O(N)。把数组分成两部分,并不需要借助额外存储空间,完全可以在按二进制位分组的同时来做异或运算,所以空间复杂度仍然是O(1)。

28.jpg

十分钟后......

29.jpg

以上就是小灰面试的情况......

30.jpg

31.jpg

32.jpg

33.jpg

喜欢本文的朋友们,欢迎长按下图关注订阅号梦见,收看更多精彩内容

34.jpg


转载声明:本文转载自公众号【程序员小灰】

原文链接:https://mp.weixin.qq.com/s/jpnqoBDo9ZbVv6WA1_vEDw


【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。