《企业级大数据平台构建:架构与实现》——2.3 HBase

举报
华章计算机 发表于 2019/06/06 15:58:38 2019/06/06
【摘要】 本书摘自《企业级大数据平台构建:架构与实现》——书中第2章,2.3.1节,作者是朱凯。

2.3 HBase

2.3.1 概述

HBase的出现很好地弥补了大数据快速查询能力的空缺。让我们再次将时间拨回到2006年,那时Hadoop项目已经正式启动,开源社区已经拥有了HDFS和MapReduce。通过HDFS我们拥有了能够存储海量文件的分布式文件系统。通过MapReduce我们拥有了一种对海量数据进行批处理操作的途径。但是这还不够,我们在大数据领域还没有一款能够称为数据库的产品。就在2006年年末,Google发表了著名的Bigtable论文。此后HBase便诞生了。

HBase是一个构建在HDFS之上的、分布式的、支持多版本的NoSql数据库。它也是Google BigTable的开源实现。HBase非常适合于对海量数据进行实时随机读写。HBase中的一张表能够支撑数十亿行和数百万列。

HBase从设计上来讲是一个由三类服务组成的Master/Slave架构服务。HBase Master进程负责处理Region分配、DDL(create、delete表)这类操。数据的读写由Region-

Servers进程负责处理。底层数据存储和集群协同管理则交由HDFS和Zookeeper进行管理,如图2-6所示。

image.png

图2-6 HBase逻辑架构图

HBase的所有数据最终都以HDFS文件的形式进行存储,Region Server服务通常是伴随着HDFS的Datanode进行部署的,这样可以更好地利用数据本地性的优势。

HBase采用主从架构。其分布式协调是通过Zookeeper进行管理的,而数据的物理存储最终会以文件的形式存储到HDFS。


【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。