《深度学习之TensorFlow入门、原理与进阶实战》—3.3.9 迭代更新参数到最优解

举报
华章计算机 发表于 2019/05/31 14:17:40 2019/05/31
【摘要】 本书摘自《深度学习之TensorFlow入门、原理与进阶实战》一书中的第3章,第3.3.9节,编著是李金洪.

3.3.9  迭代更新参数到最优解

  在迭代训练环节,都是需要通过建立一个session来完成的,常用的是使用with语法,可以在session结束后自行关闭,当然还有其他方法,第4章会详细介绍。


with tf.Session() as sess:


  前面说过,在session中通过run来运算模型中的节点,在训练环节也是如此,只不过run里面放的是优化操作的OP,同时会在外层加上循环次数。


for epoch in range(training_epochs):

        for (x, y) in zip(train_X, train_Y):

            sess.run(optimizer, feed_dict={X: x, Y: y})


  真正使用过程中会引入一个叫做MINIBATCH概念进行迭代训练,即每次取一定量的数据同时放到网络里进行训练,这样做的好处和意义会在后面详细介绍。


【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。