《AI安全之对抗样本入门》—1.1.3 定义损失函数

举报
华章计算机 发表于 2019/06/17 15:43:50 2019/06/17
【摘要】 本节书摘来自华章计算机《AI安全之对抗样本入门》一书中的第1章,第1.1.3节,作者是兜哥。

1.1.3 定义损失函数

完成了网络定义后,我们可以针对指定的输入x获得对应的预测值y,我们自然希望预测值y与真实值y_之间的差距越小越好,理想的情况就是在数据集上预测值y和真实值y_总是完全一样。但是事实上这几乎是无法做到的,我们需要定义预测值和真实值之间的差距,也就是理想和现实之间的差距。可以认为深度学习训练的过程,就是不断追求损失函数最小化的过程。以Keras为例,常见的损失函数有以下几种:

  • mean_squared_error或mse

  • mean_absolute_error或mae

  • mean_absolute_percentage_error或mape

  • mean_squared_logarithmic_error或msle

  • squared_hinge

  • hinge

  • categorical_hinge

  • binary_crossentropy

  • logcosh

  • categorical_crossentropy

  • sparse_categorical_crossentrop

其中二分类问题经常使用的是binary_crossentropy,多分类问题经常使用的是categorical_crossentropy,回归问题使用mse和mae。


【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。