《Spark机器学习进阶实战》——1.3 机器学习分类

举报
华章计算机 发表于 2019/05/30 23:53:21 2019/05/30
【摘要】 本书摘自《Spark机器学习进阶实战》——书中的第1章,第1.3.1节,作者是马海平、于俊、吕昕、向海。

1.3 机器学习分类

机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时工作中都或多或少会用到机器学习算法。机器学习按照学习形式进行分类,可分为监督学习、无监督学习、半监督学习、强化学习等。区别在于,监督学习需要提供标注的样本集,无监督学习不需要提供标注的样本集,半监督学习需要提供少量标注的样本,而强化学习需要反馈机制。

1.3.1 监督学习

监督学习是利用已标记的有限训练数据集,通过某种学习策略/方法建立一个模型,实现对新数据/实例的标记(分类)/映射。监督学习要求训练样本的分类标签已知,分类标签的精确度越高,样本越具有代表性,学习模型的准确度越高。监督学习在自然语言处理、信息检索、文本挖掘、手写体辨识、垃圾邮件侦测等领域获得了广泛应用。

监督学习的输入是标注分类标签的样本集,通俗地说,就是给定了一组标准答案。监督学习从这样给定了分类标签的样本集中学习出一个函数,当新的数据到来时,就可以根据这个函数预测新数据的分类标签。监督学习过程如图1-5所示。

image.png

图1-5 监督学习流程图

在监督学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对反垃圾邮件系统中的“垃圾邮件”“非垃圾邮件”分类等。在建立预测模型的时候,监督学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断调整预测模型,直到模型的预测结果达到一个预期的准确率。

最典型的监督学习算法包括回归和分类等。


【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。