作者小头像 Lv.2
146 成长值

个人介绍

这个人很懒,什么都没有留下

感兴趣或擅长的领域

暂无数据
个人勋章
TA还没获得勋章~
成长雷达
125
21
0
0
0

个人资料

个人介绍

这个人很懒,什么都没有留下

感兴趣或擅长的领域

暂无数据

达成规则

发布时间 2022/08/11 09:51:46 最后回复 林小淦 2022/08/11 15:25:26 版块 物联网培训
93 4 0
他的回复:
关键点 1.人工智能、深度学习的发展历程 2.深度学习框架 3.神经网络训练方法 4.卷积神经网络,卷积核、池化、通道、激活函数 5.循环神经网络,长短时记忆LSTM、门控循环单元GRU 6.参数初始化方法、损失函数Loss、过拟合 7.对抗生成网络GAN 8.迁移学习TL 9.强化学习RF 10.图神经网络GNN 一、算法和场景融合理解 1.空间相关性的非结构化数据,CNN算法。典型的图像数据,像素点之间具有空间相关性,例如图像的分类、分割、检测都是CNN算法。 2.时间相关性的非结构化数据,RNN算法。这类场景普遍的一个现象就是数据之间具有时序相关性,也就是数据之间存在先后依赖关系。例如自然语言处理、语音相关算法都是基于RNN算法。 3.非欧氏数据结构, GNN。这类场景典型的可以用图来表示。例如社交网络等。 案例摘要讲解 医疗领域:如流行疾病、肿瘤等相关疾病检测 遥感领域:如遥感影像中的场景识别 石油勘探:如石油油粒大小检测 轨道交通:如地铁密集人流检测 检测领域:如故障检测 公安领域:如犯罪行为分析 国防领域:目标检测、信号分析、态势感知… 经济领域:如股票预测 二、数据理解及处理 分析典型场景中的典型数据,结合具体的算法,对数据进行处理 1.结构化数据,如何对数据进行读取,进行组织。 2.图像数据,在实际应用过程中的处理方法,怎样做数据的预处理、进行数据增强等。 3.时序信号,将单点的数据如何组合成一个序列,以及对序列数据处理的基本方法。 三、技术路径设计 针对具体的场景设计特定的神经网络模型,对典型数据适配的网络结构进介绍。 1.DNN模型搭建的基本原则 2.CNN模型中常见的网络结构,以及参数分析。 3.RNN中支持的一些基本算子,如何对序列数据进行组织。 四、模型验证及问题排查 简单的算法或者模型对典型的场景进行快速验证,并且针对一些频发的问题进行讲解。 1.模型收敛状态不佳 2.分类任务重最后一层激活函数对模型的影响 五、高级-模型优化的原理 不同的模型需要采用的优化函数以及反向传播中参数的优化方法 1.模型优化的算法介绍,基于随机梯度下降的算法介绍。 2.不同场景适应的损失函数介绍。 3.针对典型场景的反向传播梯度的推到过程。 六、高级-定制化思路 结合往期学员的一些项目,简单介绍一下解决一个具体问题的思路。 遥感成像中