他的回复:
提问:1. GaussDB会对行业带来怎样的影响?2. GaussDB的三个云端的数据库怎么比较性能?我们都以DolphinDB作为benchmark。在三个云厂商上分别购买了他们的数据仓库服务,并且购买了相同类型的弹性计算节点用于部署DolphinDB。测试数据集也是相同的。3.可以比较一下这几个数据库和tidb吗反馈:关于数据库上云的一些看法:通过提供互联网接入的数据仓库功能,公共云提供商可帮助公司避开构建传统本地数据仓库所需的初始设置成本。此外,云中的这些企业数据仓库是完全托管的,因此服务提供商管理并承担提供所需数据仓库功能的责任,例如系统补丁和更新。云架构与传统的数据仓库方法有所不同。例如,在Redshift中,该服务通过要求您提供一个基于云的计算节点集群来运行,其中一些计算节点编制检索,而另一些执行这些检索。Google提供无服务器服务,这意味着Google会动态地管理机器资源的分配,并将这些决策从用户中抽离出来。云数据仓库的优化级别难以与本地部署的有限功率相匹配。列式存储(表个中的值按列而不是按行存储)可以根据需要运行的查询类型来满足更快的聚合查询。大规模并行处理也是一个重要的特性,通过使用多台机器协调大型数据集的查询处理,可显著提高速度。就云数据仓库的扩展性而言,和从云提供商那里获取更多资源一样简单。然而,本地部署的可扩展性非常耗时且成本很高,因此需要购买更多硬件。云计算中的安全性是一个棘手的问题,因为互联网上的数据传输太字节(terabytes)会带来严重的安全问题考虑,而且敏感数据也可能引起一些合规性问题。本地部署就避免了这样的担忧,因为企业控制着一切。总结云数据仓库的准入门槛低,有助于中小企业更容易访问数据仓库。此外,即使是最大型的企业也可以从较低的成本中受益,例如基础架构的持续管理和轻松的可扩展性。云数据仓库不是没有问题,比如潜在的安全问题,然而,益处大于弊端。传统的本地部署并没有完全被淘汰,但随着数据量和速度不断增长,而且云服务能更专业化地处理这些问题。随着越来越多的工作负载迁移到云中,越来越多的公司作为服务提供商进入市场,数据仓库的未来似乎在云中。