作者小头像 Lv.3
223 成长值

个人介绍

这个人很懒,什么都没有留下

感兴趣或擅长的领域

暂无数据
个人勋章
TA还没获得勋章~
成长雷达
0
114
25
30
54

个人资料

个人介绍

这个人很懒,什么都没有留下

感兴趣或擅长的领域

暂无数据

达成规则

他的回复:
分类: 目前机器学习主流分为:监督学习,无监督学习,强化学习。 监督学习: 监督学习可分为“回归”和“分类”问题。 在回归问题中,我们会预测一个连续值。也就是说我们试图将输入变量和输出用一个连续函数对应起来;而在分类问题中,我们会预测一个离散值,我们试图将输入变量与离散的类别对应起来。 每个数据点都会获得标注,如类别标签或与数值相关的标签。一个类别标签的例子:将图片分类为「苹果」或「橘子」;数值标签的例子如:预测一套二手房的售价。监督学习的目的是通过学习许多有标签的样本,然后对新的数据做出预测。例如,准确识别新照片上的水果(分类)或者预测二手房的售价(回归)。 无监督学习: 在无监督学习中,我们基本上不知道结果会是什么样子,但我们可以通过聚类的方式从数据中提取一个特殊的结构。 在无监督学习中给定的数据是和监督学习中给定的数据是不一样的。数据点没有相关的标签。相反,无监督学习算法的目标是以某种方式组织数据,然后找出数据中存在的内在结构。这包括将数据进行聚类,或者找到更简单的方式处理复杂数据,使复杂数据看起来更简单。 强化学习: Alphago用的就是强化学习,强化学习是一种学习模型,它并不会直接给你解决方案——你要通过试错去找到解决方案。 强化学习不需要标签,你选择的行动(move)越好,得到的反馈越多,所以你能通过执行这些行动看是输是赢来学习下围棋,不需要有人告诉你什么是好的行动什么是坏的行动。