SAM适配下游任务的探究:SAM Adapter

举报
Hint 发表于 2023/07/28 15:51:43 2023/07/28
【摘要】 近期大模型的涌现给AI研究带来显著的发展,META的工作Segment Anything(SAM)[1],就是其中一个为图像分割任务设计的基础大模型。然而SAM在一些特定的分割任务中表现不佳,比如阴影检测和伪装物体检测。所以如何利用预训练的大模型去适配效果不佳的下游任务成为了一个有意义的研究方向。

        近期大模型的涌现给AI研究带来显著的发展,META的工作Segment Anything(SAM),就是其中一个为图像分割任务设计的基础大模型。SAM是一种交互型的图像分割大模型,通过提供的prompt如点、框、文本描述等粗略的提示,就可以分割出图像中指定的目标,其demo的效果十分惊艳。然而在某些特殊场景的图片上并不会带来如此惊艳的效果,可能是由训练数据的差异性导致,比如阴影检测、伪装目标检测。但SAM强大的分割能力依然可以作为我们微调模型的基础,更好地为下游任务服务。本文介绍的方法SAM Adapter[2],设计了一个Adapter模,它可以在不微调SAM网络的情况下,通过简单而有效的适配器,将领域特定的信息或视觉提示注入到分割网络中,从而提高SAM在特定任务上的性能。该论文在多个任务和数据集上进行了广泛的实验,包括ISTD阴影检测数据集、COD10K、CHAMELEON和CAMO伪装物体检测数据集,以及kvasir-SEG息肉分割(医学图像分割)数据集。实验结果表明,SAM-Adapter不仅显著提升了SAM的性能,而且在这些任务上达到了最先进的水平。

        如上图所示,该模型使用了SAM的Image Encoder和Masked Decoder,其中Image Encoder冻结了参数,Decoder是参与梯度回传的。这样可以有效利用SAM已经预训练好的分割能力,同时Decoder更新参数以适配下游任务。此外作者引入了Adaptor模块,用于引入特殊任务的知识,辅助微调模型。Adaptor的网络结构仅有两层MLP层构成,其输入的知识可以是多种多样的,对于文中的任务,其输入可以是纹理信息或者是频率信息等。各种信息用下面的权重来均衡。

        作者在多个数据集上进行实验,从以下的实验结果来看,该方法的性能在下游任务中达到SOTA效果,相比原始的SAM提升效果显著,作者也证明了Adaptor模块的有效性。

[1]Kirillov A, Mintun E, Ravi N, et al. Segment anything[J]. arXiv preprint arXiv:2304.02643, 2023.

[2]Chen T, Zhu L, Ding C, et al. SAM Fails to Segment Anything?--SAM-Adapter: Adapting SAM in Underperformed Scenes: Camouflage, Shadow, and More[J]. arXiv preprint arXiv:2304.09148, 2023.



【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。