redis实现分布式锁
【摘要】 redis实现分布式锁
分布式锁
问题描述
随着业务发展的需要,原单体单机部署的系统被演化成分布式集群系统后,由于分布式系统多线程、多进程并且分布在不同机器上,这将使原单机部署情况下的并发控制锁策略失效,单纯的Java API并不能提供分布式锁的能力。为了解决这个问题就需要一种跨JVM的互斥机制来控制共享资源的访问,这就是分布式锁要解决的问题!
分布式锁主流的实现方案:
- 基于数据库实现分布式锁
- 基于缓存(Redis等)
3.基于Zookeeper
每一种分布式锁解决方案都有各自的优缺点:
4.性能:redis最高
5.可靠性:zookeeper最高
这里,我们就基于redis实现分布式锁。
命令
Redis Setnx(SET if Not eXists) 命令在指定的 key 不存在时,为 key 设置指定的值。
Redis Setex 命令为指定的 key 设置值及其过期时间。如果 key 已经存在, SETEX 命令将会替换旧的值。,/.
redis 127.0.0.1:6379> SETNX KEY_NAME VALUE
redis 127.0.0.1:6379> SETEX KEY_NAME TIMEOUT VALUE
分布式锁实现
- 多个客户端同时获取锁(setnx)
- 获取成功,执行业务逻辑{从db获取数据,放入缓存},执行完成释放锁(del)
3.其他客户端等待重试
public void testLock(){
//1获取锁,等同于 setne命令
Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock", "111");
//2获取锁成功、查询num的值
if(lock){
Object value = redisTemplate.opsForValue().get("num");
//2.1判断num为空return
if(StringUtils.isEmpty(value)){
return;
}
//2.2有值就转成成int
int num = Integer.parseInt(value+"");
//2.3把redis的num加1
redisTemplate.opsForValue().set("num", ++num);
//2.4释放锁,del
redisTemplate.delete("lock");
}else{
//3获取锁失败、每隔0.1秒再获取
try {
Thread.sleep(100);
testLock();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
优化之设置锁的过期时间
防止加上锁之后,不删除导致死锁。
- 首先想到通过expire设置过期时间(缺乏原子性:如果在setnx和expire之间出现异常,锁也无法释放)
- 在set时指定过期时间(推荐)
@GetMapping("testLock")
public void testLock(){
//1获取锁,等同于 setne 设置过期时间
Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock", "111",5, TimeUnit.SECONDS);
//2获取锁成功、查询num的值
if(lock){
Object value = redisTemplate.opsForValue().get("num");
//2.1判断num为空return
if(StringUtils.isEmpty(value)){
return;
}
//2.2有值就转成成int
int num = Integer.parseInt(value+"");
//2.3把redis的num加1
redisTemplate.opsForValue().set("num", ++num);
//2.4释放锁,del
redisTemplate.delete("lock");
}else{
//3获取锁失败、每隔0.1秒再获取
try {
Thread.sleep(100);
testLock();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
优化之UUID防误删
问题:如图
自己的锁,由于自己卡顿,被自动释放。等自己反应过来,删除了其他人的锁。
public void testLock(){
final String uuid = UUID.randomUUID().toString();
//1获取锁,等同于 setne 设置过期时间
Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock", uuid,5, TimeUnit.SECONDS);
//2获取锁成功、查询num的值
if(lock){
Object value = redisTemplate.opsForValue().get("num");
//2.1判断num为空return
if(StringUtils.isEmpty(value)){
return;
}
//2.2有值就转成成int
int num = Integer.parseInt(value+"");
//2.3把redis的num加1
redisTemplate.opsForValue().set("num", ++num);
//比较UUID值
Object lockUuid = redisTemplate.opsForValue().get("lock");
if(lockUuid.toString().equals(uuid)){
//2.4释放锁,del
redisTemplate.delete("lock");
}
}else{
//3获取锁失败、每隔0.1秒再获取
try {
Thread.sleep(100);
testLock();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
优化之LUA脚本保证删除的原子性
没有原子性操作,造成误删
@GetMapping("testLockLua")
public void testLockLua() {
//1 声明一个uuid ,将做为一个value 放入我们的key所对应的值中
String uuid = UUID.randomUUID().toString();
//2 定义一个锁:lua 脚本可以使用同一把锁,来实现删除!
String skuId = "25"; // 访问skuId 为25号的商品 100008348542
String locKey = "lock:" + skuId; // 锁住的是每个商品的数据
// 3 获取锁
Boolean lock = redisTemplate.opsForValue().setIfAbsent(locKey, uuid, 3, TimeUnit.SECONDS);
// 第一种: lock 与过期时间中间不写任何的代码。
// redisTemplate.expire("lock",10, TimeUnit.SECONDS);//设置过期时间
// 如果true
if (lock) {
// 执行的业务逻辑开始
// 获取缓存中的num 数据
Object value = redisTemplate.opsForValue().get("num");
// 如果是空直接返回
if (StringUtils.isEmpty(value)) {
return;
}
// 不是空 如果说在这出现了异常! 那么delete 就删除失败! 也就是说锁永远存在!
int num = Integer.parseInt(value + "");
// 使num 每次+1 放入缓存
redisTemplate.opsForValue().set("num", String.valueOf(++num));
/*使用lua脚本来锁*/
// 定义lua 脚本
String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
// 使用redis执行lua执行
DefaultRedisScript<Long> redisScript = new DefaultRedisScript<>();
redisScript.setScriptText(script);
// 设置一下返回值类型 为Long
// 因为删除判断的时候,返回的0,给其封装为数据类型。如果不封装那么默认返回String 类型,
// 那么返回字符串与0 会有发生错误。
redisScript.setResultType(Long.class);
// 第一个要是script 脚本 ,第二个需要判断的key,第三个就是key所对应的值。
redisTemplate.execute(redisScript, Arrays.asList(locKey), uuid);
} else {
// 其他线程等待
try {
// 睡眠
Thread.sleep(1000);
// 睡醒了之后,调用方法。
testLockLua();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件:
- 互斥性。在任意时刻,只有一个客户端能持有锁。
- 不会发生死锁。即使有一个客户端在持有锁的期间崩溃而没有主动解锁,也能保证后续其他客户端能加锁。
- 解铃还须系铃人。加锁和解锁必须是同一个客户端,客户端自己不能把别人加的锁给解了。
- 加锁和解锁必须具有原子性。
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)