【Python使用】嘿马python高级进阶全体系教程第13篇:My Awesome Book,property属性【附代码文档
🏆🏆🏆教程全知识点简介:1.静态Web服务器涵盖固定页面数据返回、命令行启动动态端口绑定。2. Python高级特性包括闭包变量修改、装饰器(定义、语法糖、执行时间统计)、property属性、with语句和上下文管理器、深拷贝和浅拷贝。3. 正则表达式涉及多字符匹配(*、{m,n})、开头结尾匹配(^$)、字符排除匹配、分组匹配。4. 操作系统基础包括操作系统概念、虚拟机软件、Ubuntu系统、Linux内核及发行版。5. Linux命令系统涵盖目录查看、路径操作、文件操作(ls、mkdir、rm、cp、mv)、重定向、文件内容查看、链接、压缩解压缩(tar、zip)。6. 系统管理包括文件权限(chmod)、用户权限(whoami、passwd)、用户创建、编辑器vim、软件安装卸载。7. 并发编程涵盖多任务概念、进程(进程编号获取、参数传递)、线程(执行特性、共享变量、死锁处理)、进程线程对比、协程(概念、优点、gevent)。8. 网络编程包括端口概念、TCP协议特点、socket使用、TCP开发流程、客户端服务端开发。9. HTTP协议涉及浏览器服务器通信、URL组成、开发者工具使用。
📚📚仓库code.zip 👉直接-->: https://gitee.com/yinuo112/Backend/blob/master/Python/嘿马python高级进阶全体系教程/note.md 🍅🍅
✨ 本教程项目亮点
🧠 知识体系完整:覆盖从基础原理、核心方法到高阶应用的全流程内容
💻 全技术链覆盖:完整前后端技术栈,涵盖开发必备技能
🚀 从零到实战:适合 0 基础入门到提升,循序渐进掌握核心能力
📚 丰富文档与代码示例:涵盖多种场景,可运行、可复用
🛠 工作与学习双参考:不仅适合系统化学习,更可作为日常开发中的查阅手册
🧩 模块化知识结构:按知识点分章节,便于快速定位和复习
📈 长期可用的技术积累:不止一次学习,而是能伴随工作与项目长期参考
🎯🎯🎯全教程总章节

🚀🚀🚀本篇主要内容
This file file serves as your book's preface, a great place to describe your book's content and ideas.
property属性
学习目标
- 能够知道装饰器方式的property属性的定义方式
1. property属性的介绍
property属性就是负责把一个方法当做属性进行使用,这样做可以简化代码使用。
定义property属性有两种方式
- 装饰器方式
- 类属性方式
2. 装饰器方式
class Person(object):
def __init__(self):
self.__age = 0
# 装饰器方式的property, 把age方法当做属性使用, 表示当获取属性时会执行下面修饰的方法
@property
def age(self):
return self.__age
# 把age方法当做属性使用, 表示当设置属性时会执行下面修饰的方法
@age.setter
def age(self, new_age):
if new_age >= 150:
print("成精了")
else:
self.__age = new_age
# 创建person
p = Person()
print(p.age)
p.age = 100
print(p.age)
p.age = 1000
[threading 文档]
运行结果:
0
100
成精了
[email-validator 文档]
代码说明:
[FastAPI 文档]
- @property 表示把方法当做属性使用, 表示当获取属性时会执行下面修饰的方法
- @方法名.setter 表示把方法当做属性使用,表示当设置属性时会执行下面修饰的方法
- 装饰器方式的property属性修饰的方法名一定要一样。
3. 类属性方式
class Person(object):
def __init__(self):
self.__age = 0
def get_age(self):
"""当获取age属性的时候会执行该方法"""
return self.__age
def set_age(self, new_age):
"""当设置age属性的时候会执行该方法"""
if new_age >= 150:
print("成精了")
else:
self.__age = new_age
# 类属性方式的property属性
age = property(get_age, set_age)
# 创建person
p = Person()
print(p.age)
p.age = 100
print(p.age)
p.age = 1000
[tqdm 文档]
运行结果:
0
100
成精了
代码说明:
-
property的参数说明:
-
第一个参数是获取属性时要执行的方法
- 第二个参数是设置属性时要执行的方法
4. 小结
-
定义property属性有两种方式:
-
装饰器方式
-
类属性方式
-
装饰器方式:
-
@property 修饰获取值的方法
-
@方法名.setter 修饰设置值的方法
-
类属性方式:
-
类属性 = property(获取值方法, 设置值方法)
with语句和上下文管理器
学习目标
- 能够知道自定义上下文管理器的两种方式
1. with语句的使用
基础班向文件中写入数据的示例代码:
# 1、以写的方式打开文件
f = open("1.txt", "w")
# 2、写入文件内容
f.write("hello world")
# 3、关闭文件
f.close()
代码说明:
- 文件使用完后必须关闭,因为文件对象会占用操作系统的资源,并且操作系统同一时间能打开的文件数量也是有限的
这种写法可能出现一定的安全隐患,错误代码如下:
# 1、以读的方式打开文件
f = open("1.txt", "r")
# 2、读取文件内容
f.write("hello world")
# 3、关闭文件
f.close()
运行结果:
[LightGBM 文档]
Traceback (most recent call last):
File "/home/python/Desktop/test/xxf.py", line 4, in <module>
f.write("hello world")
io.UnsupportedOperation: not writable
代码说明:
- 由于文件读写时都有可能产生IOError,一旦出错,后面的f.close()就不会调用。
- 为了保证无论是否出错都能正确地关闭文件, 可以使用try ... finally来解决
安全写法, 代码如下:
try:
# 1、以读的方式打开文件
f = open("1.txt", "r")
# 2、读取文件内容
f.write("xxxxx")
except IOError as e:
print("文件操作出错", e)
finally:
# 3、关闭文件
f.close()
[re 正则表达式]
运行结果:
文件操作出错 not writable
这种方法虽然代码运行良好,但是缺点就是代码过于冗长,并且需要添加try-except-finally语句,不是很方便,也容易忘记.
在这种情况下,Python提供了 with 语句的这种写法,既简单又安全,并且 with 语句执行完成以后自动调用关闭文件操作,即使出现异常也会自动调用关闭文件操作。
with 语句的示例代码:
# 1、以写的方式打开文件
with open("1.txt", "w") as f:
# 2、读取文件内容
f.write("hello world")
2. 上下文管理器
一个类只要实现了__enter__()和__exit__()这个两个方法,通过该类创建的对象 就称之为上下文管理器。
上下文管理器可以使用 with 语句,with语句之所以这么强大,背后是由上下文管理器做支撑的,也就是说刚才使用 open 函数创建的文件对象就是就是一个上下文管理器对象。
自定义上下文管理器类,模拟文件操作:
定义一个File类,实现 __enter__() 和 __exit__()方法,然后使用 with 语句来完成操作文件, 示例代码:
class File(object):
# 初始化方法
def __init__(self, file_name, file_model):
# 定义变量保存文件名和打开模式
self.file_name = file_name
self.file_model = file_model
# 上文方法
def __enter__(self):
print("进入上文方法")
# 返回文件资源
self.file = open(self.file_name,self.file_model)
return self.file
# 下文方法
def __exit__(self, exc_type, exc_val, exc_tb):
print("进入下文方法")
self.file.close()
if __name__ == '__main__':
# 使用with管理文件
with File("1.txt", "r") as file:
file_data = file.read()
print(file_data)
运行结果:
进入上文方法
hello world
进入下文方法
代码说明:
__enter__表示上文方法,需要返回一个操作文件对象__exit__表示下文方法,with语句执行完成会自动执行,即使出现异常也会执行该方法。
3. 小结
- Python 提供了 with 语句用于简化资源释放的操作,使用 with 语句操作建立在上下文管理器(实现
__enter__和__exit__)的基础上
生成器的创建方式
[structlog 文档]
学习目标
- 能够知道生成器的两种创建方式
1. 生成器的介绍
根据程序员制定的规则循环生成数据,当条件不成立时则生成数据结束。数据不是一次性全部生成出来,而是使用一个,再生成一个,可以节约大量的内存。
2. 创建生成器的方式
- 生成器推导式
- yield 关键字
生成器推导式:
- 与列表推导式类似,只不过生成器推导式使用小括号
[Jupyter 文档]
# 创建生成器
my_generator = (i * 2 for i in range(5))
print(my_generator)
# next获取生成器下一个值
# value = next(my_generator)
# print(value)
# 遍历生成器
for value in my_generator:
print(value)
代码说明:
- next 函数获取生成器中的下一个值
- for 循环遍历生成器中的每一个值
运行结果:
<generator object <genexpr> at 0x101367048>
0
2
4
6
8
yield 关键字:
- 只要在def函数里面看到有 yield 关键字那么就是生成器
[reportlab 文档]
def mygenerater(n):
for i in range(n):
print('开始生成...')
yield i
print('完成一次...')
if __name__ == '__main__':
g = mygenerater(2)
# 获取生成器中下一个值
# result = next(g)
# print(result)
# while True:
# try:
# result = next(g)
# print(result)
# except StopIteration as e:
# break
# # for遍历生成器, for 循环内部自动处理了停止迭代异常,使用起来更加方便
for i in g:
print(i)
代码说明:
- 代码执行到 yield 会暂停,然后把结果返回出去,下次启动生成器会在暂停的位置继续往下执行
- 生成器如果把数据生成完成,再次获取生成器中的下一个数据会抛出一个StopIteration 异常,表示停止迭代异常
- while 循环内部没有处理异常操作,需要手动添加处理异常操作
- for 循环内部自动处理了停止迭代异常,使用起来更加方便,推荐大家使用。
运行结果:
开始生成...
0
完成一次...
开始生成...
1
完成一次...
3. 生成器的使用场景
数学中有个著名的斐波拉契数列(Fibonacci),数列中第一个数为0,第二个数为1,其后的每一个数都可由前两个数相加得到:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
现在 使用生成器来实现这个斐波那契数列,每次取值都通过算法来生成下一个数据, 生成器每次调用只生成一个数据,可以节省大量的内存。
def fibonacci(num):
a = 0
b = 1
# 记录生成fibonacci数字的下标
current_index = 0
while current_index < num:
result = a
a, b = b, a + b
current_index += 1
# 代码执行到yield会暂停,然后把结果返回出去,下次启动生成器会在暂停的位置继续往下执行
yield result
fib = fibonacci(5)
# 遍历生成的数据
for value in fib:
print(value)
运行结果:
0
1
1
2
3
4. 小结
- 生成器是根据算法生成数据的一种机制,每次调用生成器只生成一个值,可以节省大量内存。
-
生成器的创建有两种方式:
-
- 生成器推导式
-
- yield 关键字
🚀✨ (未完待续)项目系列下一章
📚下一篇 将进入更精彩的环节! 🔔 记得收藏 & 关注,第一时间获取更新! 🍅 一起见证整个系列逐步成型的全过程。
- 点赞
- 收藏
- 关注作者
评论(0)