EM算法理解的第一层境界:期望E和最大化M(二)

举报
人工智障研究员 发表于 2022/06/20 23:04:56 2022/06/20
【摘要】 本文介绍了EM算法的第一层境界的第二部分内容:形式上理解EM算法的期望和最大化,以经典的三硬币问题作为例子,通过数学推导介绍了EM算法的形式和内容。

前言:学生时代入门机器学习的时候接触的EM算法,当时感觉这后面应该有一套数学逻辑来约束EM算法的可行性。最近偶然在知乎上拜读了史博大佬的《EM算法理解的九层境界》[1],顿时感觉自己还是局限了。重新学习思考了一段时间,对EM算法有了更深的理解。这里顺着大佬的境界路径,看自己能够探索到第几层。

EM算法理解的第一层境界:期望E和最大化M(一)

四、数学推导理解EM算法的形式

接下来我们通过严格的数学推导来理解EM算法形式式子的含义。接着上面给出的EM算法的式子:

θ ( t + 1 ) = arg max θ Q ( θ θ ( t ) ) = arg max θ E Z X , θ ( t ) [ log L ( θ ; X , Z ) ] \theta^{(t+1)}=\argmax_{\theta}Q(\theta|\theta^{(t)})=\argmax_{\theta}E_{Z|X,\theta^{(t)}}[\log L(\theta;X,Z)]

下面我们一步一步进行推导。
首先隐变量 Z = [ z 1 , z 2 , . . . , z n ] , z i { 0 , 1 } Z=[z_1, z_2, ..., z_n], z_i\in\{0,1\} ,分量 z i = 1 z_i=1 表示 i i 轮次使用的是硬币 A A ,分量 z i = 0 z_i=0 表示 i i 轮次使用的是硬币 B B ,一共进行了 n n 轮次的投币行为。那么隐变量 Z Z 的变量空间为 { 0 , 1 } n \{0, 1\}^n ,一共 2 n 2^n 个离散点组成的离散空间。于是我们有:

E Z X , θ ( t ) [ log L ( θ ; X , Z ) ] = Z { 0 , 1 } n [ P ( Z X , θ ( t ) ) log L ( θ ; X , Z ) ] E_{Z|X,\theta^{(t)}}[\log L(\theta;X,Z)]=\sum_{Z \in \{0, 1\}^n}[P(Z|X, \theta^{(t)}) * \log L(\theta;X,Z)]

其中,隐变量 z i z_i 之间是独立同分布的,所以我们有:

P ( Z X , θ ( t ) ) = i = 1 n P ( z i x i , θ ( t ) ) P(Z|X, \theta^{(t)}) = \prod_{i=1}^{n}P(z_i|x_i, \theta^{(t)})

对于每一个轮次 i i 而言,在给定观测变量 x i [ 0 , δ ] x_i \in [0, \delta] 和硬币的概率参数 θ ( t ) \theta^{(t)} (即 θ A ( t ) \theta_A^{(t)} θ B ( t ) \theta_B^{(t)} θ C ( t ) \theta_C^{(t)} )之后,我们有:

P ( z i x i , θ ( t ) ) = P ( z i , x i θ ( t ) ) P ( x i θ ( t ) ) = P ( z i , x i θ ( t ) ) z i 0 , 1 P ( z i , x i θ ( t ) ) \begin{aligned} P(z_i|x_i, \theta^{(t)}) & = \frac{P(z_i, x_i | \theta^{(t)})}{P(x_i| \theta^{(t)})} \\ & = \frac{P(z_i, x_i|\theta^{(t)})}{\sum_{z_i\in{0,1}} P(z_i, x_i| \theta^{(t)})} \end{aligned}

其中,给定 θ ( t ) \theta^{(t)} 之后, ( z i , x i ) (z_i, x_i) 的联合概率分布可以直接给出来, P ( z i = 1 , x i θ ( t ) ) P(z_i=1, x_i | \theta^{(t)}) 为第 i i 轮次是硬币 A A 且抛出了 x i x_i 个正面的概率:

P ( z i = 1 , x i θ ( t ) ) = P ( z i = 1 θ ( t ) ) P ( x i z i = 1 , θ ( t ) ) = P ( z i = 1 θ ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i = θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i \begin{aligned} P(z_i=1, x_i | \theta^{(t)}) & = P(z_i=1 | \theta^{(t))} * P(x_i | z_i=1, \theta^{(t)})\\ & = P(z_i=1 | \theta^{(t)})* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i} \\ & = \theta_C^{(t)} * (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i} \end{aligned}

P ( z i = 0 , x i , θ ( t ) ) P(z_i=0, x_i, \theta^{(t)}) 为第 i i 轮次是硬币 B B 且抛出了 x i x_i 个正面的概率:

P ( z i = 0 , x i θ ( t ) ) = P ( z i = 0 θ ( t ) ) P ( x i z i = 0 , θ ( t ) ) = P ( z i = 0 θ ( t ) ( θ B ( t ) ) x i ( 1 θ B ( t ) ) δ x i = ( 1 θ C ( t ) ) ( θ B ( t ) ) x i ( 1 θ B ( t ) ) δ x i \begin{aligned} P(z_i=0, x_i| \theta^{(t)}) & = P(z_i=0|\theta^{(t)}) * P(x_i|z_i=0, \theta^{(t)})\\ & = P(z_i=0| \theta^{(t)})* (\theta_B^{(t)})^{x_i}*(1-\theta_B^{(t)})^{\delta - x_i} \\ & = (1-\theta_C^{(t)}) * (\theta_B^{(t)})^{x_i}*(1-\theta_B^{(t)})^{\delta - x_i} \end{aligned}

接下来,给定 x i , θ ( t ) x_i, \theta^{(t)} 情况下轮次 i i 是硬币A的概率 P ( z i = 1 x i , θ ( t ) ) P(z_i=1|x_i, \theta^{(t)}) 和是硬币B的概率 P ( z i = 0 x i , θ ( t ) ) P(z_i=0|x_i, \theta^{(t)}) 如下:

P ( z i = 1 x i , θ ( t ) ) = P ( z i = 1 , x i θ ( t ) ) P ( z i = 1 , x i θ ( t ) ) + P ( z i = 0 , x i θ ( t ) ) = θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i + ( 1 θ C ( t ) ) ( θ B ( t ) ) x i ( 1 θ B ( t ) ) δ x i \begin{aligned} P(z_i=1|x_i, \theta^{(t)}) & = \frac{P(z_i=1, x_i | \theta^{(t)})}{P(z_i=1, x_i | \theta^{(t)}) + P(z_i=0, x_i | \theta^{(t)})} \\ & = \frac{\theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i}}{\theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i}+(1-\theta_C^{(t)})* (\theta_B^{(t)})^{x_i}*(1-\theta_B^{(t)})^{\delta - x_i}} \end{aligned}

P ( z i = 0 x i , θ ( t ) ) = P ( z i = 0 , x i θ ( t ) ) P ( z i = 1 , x i θ ( t ) ) + P ( z i = 0 , x i θ ( t ) ) = ( 1 θ C ( t ) ) ( θ B ( t ) ) x i ( 1 θ B ( t ) ) δ x i θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i + ( 1 θ C ( t ) ) ( θ B ( t ) ) x i ( 1 θ B ( t ) ) δ x i \begin{aligned} P(z_i=0|x_i, \theta^{(t)}) & = \frac{P(z_i=0, x_i|\theta^{(t)})}{P(z_i=1, x_i | \theta^{(t)}) + P(z_i=0, x_i | \theta^{(t)})} \\ & = \frac{(1-\theta_C^{(t)})* (\theta_B^{(t)})^{x_i}*(1-\theta_B^{(t)})^{\delta - x_i}}{\theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i}+(1-\theta_C^{(t)})* (\theta_B^{(t)})^{x_i}*(1-\theta_B^{(t)})^{\delta - x_i}} \end{aligned}

两个式子的分母是一样的,我们记

η i = θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i + ( 1 θ C ( t ) ) ( θ B ( t ) ) x i ( 1 θ B ( t ) ) δ x i \eta_i=\theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i}+(1-\theta_C^{(t)})* (\theta_B^{(t)})^{x_i}*(1-\theta_B^{(t)})^{\delta - x_i}

则有:

P ( z i = 0 x i , θ ( t ) ) = 1 η i θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i P(z_i=0|x_i, \theta^{(t)})=\frac{1}{\eta_i} \theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i}

P ( z i = 1 x i , θ ( t ) ) = 1 η i ( 1 θ C ( t ) ) ( θ B ( t ) ) x i ( 1 θ B ( t ) ) δ x i P(z_i=1|x_i, \theta^{(t)})=\frac{1}{\eta_i} (1-\theta_C^{(t)})* (\theta_B^{(t)})^{x_i}*(1-\theta_B^{(t)})^{\delta - x_i}

变量 ( Z X , θ ( t ) ) (Z|X, \theta^{(t)}) 的分布我们表示出来了,下一步来求联合分布 ( θ ; X , Z ) (\theta;X,Z) 的log-likelyhood: log L ( θ ; X , Z ) \log L(\theta;X,Z)
对于每一轮次的likelyhood,我们有:

L ( θ ; x i , z i ) = P ( x i z i , θ ) P ( z i θ ) P ( θ ) = ( z i θ A + ( 1 z i ) θ B ) x i ( 1 z i θ A ( 1 z i ) θ B ) ( δ x i ) θ C z i ( 1 θ C ) 1 z i 1 \begin{aligned} L(\theta; x_i, z_i) & = P(x_i|z_i, \theta) * P(z_i|\theta) * P(\theta) \\ &= (z_i*\theta_A+(1-z_i)\theta_B)^{x_i}*(1-z_i*\theta_A-(1-z_i)\theta_B)^{(\delta-x_i)} * \theta_C^{z_i} * (1-\theta_C)^{1-z_i} * 1 \end{aligned}

同样,由于每个轮次都是独立同分布的,我们有:

L ( θ ; X , Z ) = i = 1 n L ( θ ; x i , z i ) = i = 1 n ( z i θ A + ( 1 z i ) θ B ) x i ( 1 z i θ A ( 1 z i ) θ B ) ( δ x i ) θ C z i ( 1 θ C ) 1 z i \begin{aligned} L(\theta;X,Z) & =\prod_{i=1}^{n} L(\theta; x_i, z_i)\\ &=\prod_{i=1}^{n}(z_i*\theta_A+(1-z_i)\theta_B)^{x_i}*(1-z_i*\theta_A-(1-z_i)\theta_B)^{(\delta-x_i)}*\theta_C^{z_i} * (1-\theta_C)^{1-z_i} \end{aligned}

log \log 一下我们有:

log L ( θ ; X , Z ) = log i = 1 n ( z i θ A + ( 1 z i ) θ B ) x i ( 1 z i θ A ( 1 z i ) θ B ) ( δ x i ) θ C z i ( 1 θ C ) 1 z i = i = 1 n [ x i log ( z i θ A + ( 1 z i ) θ B ) + ( δ x i ) log ( 1 z i θ A ( 1 z i ) θ B ) + z i log θ C + ( 1 z i ) log ( 1 θ C ) ] \begin{aligned} \log L(\theta;X,Z) &= \log \prod_{i=1}^{n}(z_i*\theta_A+(1-z_i)\theta_B)^{x_i}*(1-z_i*\theta_A-(1-z_i)\theta_B)^{(\delta-x_i)}*\theta_C^{z_i} * (1-\theta_C)^{1-z_i}\\ &= \sum_{i=1}^{n}[x_i*\log(z_i*\theta_A+(1-z_i)\theta_B) + (\delta-x_i)*\log(1-z_i*\theta_A-(1-z_i)\theta_B)+z_i*\log \theta_C+(1-z_i)*\log (1-\theta_C)] \end{aligned}

OK,到这一步 log L ( θ ; X , Z ) \log L(\theta;X,Z) P ( Z X , θ ( t ) ) P(Z|X, \theta^{(t)}) 我们都表示出来了,接下来就是对他们求个期望:

E Z X , θ ( t ) [ log L ( θ ; X , Z ) ] = Z { 0 , 1 } n [ P ( Z X , θ ( t ) ) log L ( θ ; X , Z ) ] = Z { 0 , 1 } n i = 1 n P ( z i x i , θ ( t ) ) j = 1 n l ( x j , z j , θ ) \begin{aligned} E_{Z|X,\theta^{(t)}}[\log L(\theta;X,Z)] & =\sum_{Z \in \{0, 1\}^n}[P(Z|X, \theta^{(t)}) * \log L(\theta;X,Z)] \\ &=\sum_{Z \in \{0, 1\}^n} \prod_{i=1}^{n} P(z_i|x_i, \theta^{(t)})*\sum_{j=1}^{n}l(x_j, z_j, \theta) \end{aligned}

注意,这里我们为了防止变量重复,把 log L ( θ ; X , Z ) \log L(\theta;X,Z) 中的遍历变量 i i 替换为了 j j 。其中

l ( x j , z j , Q ) = x j log ( z j θ A + ( 1 z j ) θ B ) + ( δ x j ) log ( 1 z j θ A ( 1 z j ) θ B ) + z j log θ C + ( 1 z j ) log ( 1 θ C ) l(x_j, z_j, Q) = x_j*\log(z_j*\theta_A+(1-z_j)\theta_B) + (\delta-x_j)*\log(1-z_j*\theta_A-(1-z_j)\theta_B)+z_j*\log \theta_C+(1-z_j)*\log (1-\theta_C)

P ( z i = 0 x i , θ ( t ) ) = 1 η i θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i P(z_i=0|x_i, \theta^{(t)})=\frac{1}{\eta_i} \theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i}

P ( z i = 1 x i , θ ( t ) ) = 1 η i ( 1 θ C ( t ) ) ( θ B ( t ) ) x i ( 1 θ B ( t ) ) δ x i P(z_i=1|x_i, \theta^{(t)})=\frac{1}{\eta_i} (1-\theta_C^{(t)})* (\theta_B^{(t)})^{x_i}*(1-\theta_B^{(t)})^{\delta - x_i}

这里得到的 E Z X , θ ( t ) [ log L ( θ ; X , Z ) ] E_{Z|X,\theta^{(t)}}[\log L(\theta;X,Z)] 式子开起来很吓人,直接使用期望的性质可以将其化简为简单的形式,这里我们不使用独立分布期望的性质,直接使用一些数学技巧来进行化简。

对于所有的变量空间 Z { 0 , 1 } n Z \in \{0, 1\}^n ,我们将其拆分一下, z 1 z_1 z 2 , z 3 , . . . , z n z2, z3, ..., z_n 分别表示为 z 1 z_1 Z 2 n Z_2^n ,然后将其分为 z 1 = 1 z_1=1 z 1 = 0 z_1=0 两个部分。那么上面式子可以分解为:

E Z X , θ ( t ) [ log L ( θ ; X , Z ) ] = z 1 = 1 , Z 2 n { 0 , 1 } n 1 i = 1 n P ( z i x i , θ ( t ) ) j = 1 n l ( x j , z j , θ ) + z 1 = 0 , Z 2 n { 0 , 1 } n 1 i = 1 n P ( z i x i , θ ( t ) ) j = 1 n l ( x j , z j , θ ) = z 1 = 1 , Z 2 n { 0 , 1 } n 1 i = 2 n P ( z i x i , θ ( t ) ) P ( z 1 = 1 x 1 , θ ( t ) ) [ l ( x 1 , z 1 = 1 , θ ) + j = 2 n l ( x j , z j , θ ) ] + z 1 = 0 , Z 2 n { 0 , 1 } n 1 i = 2 n P ( z i x i , θ ( t ) ) P ( z 0 = 1 x 1 , θ ( t ) ) [ l ( x 1 , z 1 = 0 , θ ) + j = 2 n l ( x j , z j , θ ) ] = P ( z 1 = 1 x 1 , θ ( t ) ) l ( x 1 , z 1 = 1 , θ ) Z 2 n { 0 , 1 } n 1 i = 2 n P ( z i x i , θ ( t ) ) + P ( z 1 = 1 x 1 , θ ( t ) ) Z 2 n { 0 , 1 } n 1 i = 2 n P ( z i x i , θ ( t ) ) j = 2 n l ( x j , z j , θ ) + P ( z 1 = 0 x 1 , θ ( t ) ) l ( x 1 , z 1 = 0 , θ ) Z 2 n { 0 , 1 } n 1 i = 2 n P ( z i x i , θ ( t ) ) + P ( z 1 = 0 x 1 , θ ( t ) ) Z 2 n { 0 , 1 } n 1 i = 2 n P ( z i x i , θ ( t ) ) j = 2 n l ( x j , z j , θ ) \begin{aligned} E_{Z|X,\theta^{(t)}}[\log L(\theta;X,Z)] &= \sum_{z1=1, Z_2^n \in \{0, 1\}^{n-1}} \prod_{i=1}^{n} P(z_i|x_i, \theta^{(t)})*\sum_{j=1}^{n}l(x_j, z_j, \theta) \\ &+ \sum_{z1=0, Z_2^n \in \{0, 1\}^{n-1}} \prod_{i=1}^{n} P(z_i|x_i, \theta^{(t)})*\sum_{j=1}^{n}l(x_j, z_j, \theta) \\ &= \sum_{z1=1, Z_2^n \in \{0, 1\}^{n-1}} \prod_{i=2}^{n} P(z_i|x_i, \theta^{(t)})*P(z_1=1|x_1, \theta^{(t)})*[l(x_1, z_1=1, \theta)+\sum_{j=2}^{n}l(x_j, z_j, \theta)] \\ &+ \sum_{z1=0, Z_2^n \in \{0, 1\}^{n-1}} \prod_{i=2}^{n} P(z_i|x_i, \theta^{(t)})*P(z_0=1|x_1, \theta^{(t)})*[l(x_1, z_1=0, \theta)+\sum_{j=2}^{n}l(x_j, z_j, \theta)] \\ & = P(z_1=1|x_1, \theta^{(t)}) * l(x_1, z_1=1, \theta) * \sum_{Z_2^n \in \{0, 1\}^{n-1}} \prod_{i=2}^{n} P(z_i|x_i, \theta^{(t)}) \\ & + P(z_1=1|x_1, \theta^{(t)}) * \sum_{Z_2^n \in \{0, 1\}^{n-1}} \prod_{i=2}^{n} P(z_i|x_i, \theta^{(t)}) * \sum_{j=2}^{n}l(x_j, z_j, \theta)\\ & + P(z_1=0|x_1, \theta^{(t)}) * l(x_1, z_1=0, \theta) * \sum_{Z_2^n \in \{0, 1\}^{n-1}} \prod_{i=2}^{n} P(z_i|x_i, \theta^{(t)}) \\ & + P(z_1=0|x_1, \theta^{(t)}) * \sum_{Z_2^n \in \{0, 1\}^{n-1}} \prod_{i=2}^{n} P(z_i|x_i, \theta^{(t)}) * \sum_{j=2}^{n}l(x_j, z_j, \theta) \end{aligned}

由概率分布之和为1的性质,我们有:

P ( z 1 = 1 x 1 , θ ( t ) ) + P ( z 1 = 0 x 1 , θ ( t ) ) = 1 P(z_1=1|x_1, \theta^{(t)})+P(z_1=0|x_1, \theta^{(t)})=1

Z 2 n { 0 , 1 } n 1 i = 2 n P ( z i x i , θ ( t ) ) = Z 2 n { 0 , 1 } n 1 P ( Z 2 n X 2 n , θ ( t ) ) = 1 \sum_{Z_2^n \in \{0, 1\}^{n-1}} \prod_{i=2}^{n} P(z_i|x_i, \theta^{(t)})=\sum_{Z_2^n \in \{0, 1\}^{n-1}}P(Z_2^n|X_2^n, \theta^{(t)})=1

所以我们有:

E Z X , θ ( t ) [ log L ( θ ; X , Z ) ] = P ( z 1 = 1 x 1 , θ ( t ) ) l ( x 1 , z 1 = 1 , θ ) + P ( z 1 = 0 x 1 , θ ( t ) ) l ( x 1 , z 1 = 0 , θ ) + Z 2 n { 0 , 1 } n 1 i = 2 n P ( z i x i , θ ( t ) ) j = 2 n l ( x j , z j , θ ) = P ( z 1 = 1 x 1 , θ ( t ) ) l ( x 1 , z 1 = 1 , θ ) + P ( z 1 = 0 x 1 , θ ( t ) ) l ( x 1 , z 1 = 0 , θ ) + P ( z 2 = 1 x 1 , θ ( t ) ) l ( x 2 , z 2 = 1 , θ ) + P ( z 2 = 0 x 1 , θ ( t ) ) l ( x 2 , z 2 = 0 , θ ) + Z 3 n { 0 , 1 } n 2 i = 3 n P ( z i x i , θ ( t ) ) j = 3 n l ( x j , z j , θ ) = . . . . . . = i = 1 n P ( z i = 1 x i , θ ( t ) ) l ( x i , z i = 1 , θ ) + i = 1 n P ( z i = 0 x i , θ ( t ) ) l ( x i , z i = 0 , θ ) \begin{aligned} E_{Z|X,\theta^{(t)}}[\log L(\theta;X,Z)] &= P(z_1=1|x_1, \theta^{(t)}) * l(x_1, z_1=1, \theta) \\ &+ P(z_1=0|x_1, \theta^{(t)}) * l(x_1, z_1=0, \theta) \\ &+ \sum_{Z_2^n \in \{0, 1\}^{n-1}} \prod_{i=2}^{n} P(z_i|x_i, \theta^{(t)}) * \sum_{j=2}^{n}l(x_j, z_j,\theta)\\ &= P(z_1=1|x_1, \theta^{(t)}) * l(x_1, z_1=1, \theta) \\ &+ P(z_1=0|x_1, \theta^{(t)}) * l(x_1, z_1=0, \theta) \\ &+ P(z_2=1|x_1, \theta^{(t)}) * l(x_2, z_2=1, \theta) \\ &+ P(z_2=0|x_1, \theta^{(t)}) * l(x_2, z_2=0, \theta) \\ &+ \sum_{Z_3^n \in \{0, 1\}^{n-2}} \prod_{i=3}^{n} P(z_i|x_i, \theta^{(t)}) * \sum_{j=3}^{n}l(x_j, z_j, \theta)\\ &=......\\ &= \sum_{i=1}^n P(z_i=1|x_i, \theta^{(t)}) * l(x_i, z_i=1, \theta) + \sum_{i=1}^n P(z_i=0|x_i, \theta^{(t)}) * l(x_i, z_i=0, \theta) \end{aligned}

最终我们求得了需要maximum的式子:

E Z X , θ ( t ) [ log L ( θ ; X , Z ) ] = i = 1 n P ( z i = 1 x i , θ ( t ) ) l ( x i , z i = 1 , Q ) + i = 1 n P ( z i = 0 x i , θ ( t ) ) l ( x i , z i = 0 , θ ) E_{Z|X,\theta^{(t)}}[\log L(\theta;X,Z)] = \sum_{i=1}^n P(z_i=1|x_i, \theta^{(t)}) * l(x_i, z_i=1, Q) + \sum_{i=1}^n P(z_i=0|x_i, \theta^{(t)}) * l(x_i, z_i=0, \theta)

其中

l ( x j , z j , θ ) = x j log ( z j θ A + ( 1 z j ) θ B ) + ( δ x j ) log ( 1 z j θ A ( 1 z j ) θ B ) + z j log θ C + ( 1 z j ) log ( 1 θ C ) l(x_j, z_j, \theta) = x_j*\log(z_j*\theta_A+(1-z_j)\theta_B) + (\delta-x_j)*\log(1-z_j*\theta_A-(1-z_j)\theta_B)+z_j*\log \theta_C+(1-z_j)*\log (1-\theta_C)

P ( z i = 0 x i , θ ( t ) ) = 1 η i θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i P(z_i=0|x_i, \theta^{(t)})=\frac{1}{\eta_i} \theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i}

P ( z i = 1 x i , θ ( t ) ) = 1 η i ( 1 θ C ( t ) ) ( θ B ( t ) ) x i ( 1 θ B ( t ) ) δ x i P(z_i=1|x_i, \theta^{(t)})=\frac{1}{\eta_i} (1-\theta_C^{(t)})* (\theta_B^{(t)})^{x_i}*(1-\theta_B^{(t)})^{\delta - x_i}

把上述式子带入,有:

E Z X , θ ( t ) [ log L ( θ ; X , Z ) ] = i = 1 n P ( z i = 1 x i , θ ( t ) ) l ( x i , z i = 1 , θ ) + i = 1 n P ( z i = 0 x i , θ ( t ) ) l ( x i , z i = 0 , θ ) = i = 1 n 1 η i θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i [ x i log θ A + ( δ x i ) log ( 1 θ A ) + log θ C ] + i = 1 n 1 η i ( 1 θ C ( t ) ) ( θ B ( t ) ) x i ( 1 θ B ( t ) ) δ x i [ x i log θ B + ( δ x i ) log ( 1 θ B ) + log ( 1 θ C ) ] \begin{aligned} E_{Z|X,\theta^{(t)}}[\log L(\theta;X,Z)] & = \sum_{i=1}^n P(z_i=1|x_i, \theta^{(t)}) * l(x_i, z_i=1, \theta) + \sum_{i=1}^n P(z_i=0|x_i, \theta^{(t)}) * l(x_i, z_i=0, \theta) \\ &= \sum_{i=1}^n \frac{1}{\eta_i} \theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i} * [x_i*\log \theta_A + (\delta-x_i)*\log(1-\theta_A)+\log \theta_C] \\ &+\sum_{i=1}^n \frac{1}{\eta_i} (1-\theta_C^{(t)})* (\theta_B^{(t)})^{x_i}*(1-\theta_B^{(t)})^{\delta - x_i} * [x_i*\log \theta_B + (\delta-x_i)*\log(1-\theta_B)+\log (1-\theta_C)] \end{aligned}

其中,

η i = θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i + ( 1 θ C ( t ) ) ( θ B ( t ) ) x i ( 1 θ B ( t ) ) δ x i \eta_i=\theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i}+(1-\theta_C^{(t)})* (\theta_B^{(t)})^{x_i}*(1-\theta_B^{(t)})^{\delta - x_i}

可以看到这个式子中,我们已经把所有隐变量 Z Z 积分消除掉了,到这里我们就可以进行求解了。我们需要求解

θ ( t + 1 ) = arg max θ Q ( θ θ ( t ) ) = arg max θ E Z X , θ ( t ) [ log L ( θ ; X , Z ) ] = arg max θ i = 1 n 1 η i θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i [ x i log θ A + ( δ x i ) log ( 1 θ A ) + log θ C ] + i = 1 n 1 η i ( 1 θ C ( t ) ) ( θ B ( t ) ) x i ( 1 θ B ( t ) ) δ x i [ x i log θ B + ( δ x i ) log ( 1 θ B ) + log ( 1 θ C ) ] \begin{aligned} \theta^{(t+1)}&=\argmax_{\theta}Q(\theta|\theta^{(t)})=\argmax_{\theta}E_{Z|X,\theta^{(t)}}[\log L(\theta;X,Z)]\\ &=\argmax_{\theta} \sum_{i=1}^n \frac{1}{\eta_i} \theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i} * [x_i*\log \theta_A + (\delta-x_i)*\log(1-\theta_A)+\log \theta_C] \\ &+\sum_{i=1}^n \frac{1}{\eta_i} (1-\theta_C^{(t)})* (\theta_B^{(t)})^{x_i}*(1-\theta_B^{(t)})^{\delta - x_i} * [x_i*\log \theta_B + (\delta-x_i)*\log(1-\theta_B)+\log (1-\theta_C)] \end{aligned}

其中, ( θ A , θ B ) (\theta_A, \theta_B) 是需要求解的变量,其他 ( θ A ( t ) , θ C ( t ) , θ C ( t ) ) , η i (\theta_A^{(t)}, \theta_C^{(t)}, \theta_C^{(t)}), \eta_i 都是常量。这里我们联立偏导方程进行求解:

{ Q θ A = 0 Q θ B = 0 Q θ C = 0 \{ \begin{aligned} \frac{\partial Q}{\partial \theta_A} = 0 \\ \frac{\partial Q}{\partial \theta_B} = 0 \\ \frac{\partial Q}{\partial \theta_C} = 0 \end{aligned}

一个一个来:

Q θ A = i = 1 n 1 η i θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i [ x i 1 θ A ( δ x i ) 1 ( 1 θ A ) ] = i = 1 n 1 η i θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i [ x i 1 θ A ( δ x i ) 1 ( 1 θ A ) ] = i = 1 n 1 η i θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i [ x i δ θ A θ A ( 1 θ A ) ] \begin{aligned} \frac{\partial Q}{\partial \theta_A} &= \sum_{i=1}^n \frac{1}{\eta_i} \theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i} * [x_i*\frac{1}{\theta_A} - (\delta-x_i)*\frac{1}{(1-\theta_A)}] \\ &=\sum_{i=1}^n \frac{1}{\eta_i} \theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i} * [x_i*\frac{1}{\theta_A} - (\delta-x_i)*\frac{1}{(1-\theta_A)}] \\ &=\sum_{i=1}^n \frac{1}{\eta_i} \theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i} * [\frac{x_i-\delta*\theta_A}{\theta_A*(1-\theta_A)}] \end{aligned}

Q θ A = 0 \frac{\partial Q}{\partial \theta_A}=0 ,我们有:

θ A ( t + 1 ) = i = 1 n 1 η i θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i x i i = 1 n 1 η i θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i δ \theta_A^{(t+1)} = \frac{\sum_{i=1}^{n}\frac{1}{\eta_i} \theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i}*x_i}{\sum_{i=1}^{n}\frac{1}{\eta_i} \theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i}*\delta}

同理我们有:

θ B ( t + 1 ) = i = 1 n 1 η i ( 1 θ C ( t ) ) ( θ B ( t ) ) x i ( 1 θ B ( t ) ) δ x i x i i = 1 n 1 η i ( 1 θ C ( t ) ) ( θ B ( t ) ) x i ( 1 θ B ( t ) ) δ x i δ \theta_B^{(t+1)} = \frac{\sum_{i=1}^{n}\frac{1}{\eta_i} (1-\theta_C^{(t)})* (\theta_B^{(t)})^{x_i}*(1-\theta_B^{(t)})^{\delta - x_i}*x_i}{\sum_{i=1}^{n}\frac{1}{\eta_i} (1-\theta_C^{(t)})* (\theta_B^{(t)})^{x_i}*(1-\theta_B^{(t)})^{\delta - x_i}*\delta}

θ C ( t + 1 ) = i = 1 n 1 η i θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i i = 1 n 1 η i [ θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i + ( 1 θ C ( t ) ) ( θ B ( t ) ) x i ( 1 θ B ( t ) ) δ x i ] = 1 n i = 1 n 1 η i θ C ( t ) ( θ A ( t ) ) x i ( 1 θ A ( t ) ) δ x i \begin{aligned} \theta_C^{(t+1)} &= \frac{\sum_{i=1}^{n}\frac{1}{\eta_i} \theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i}}{\sum_{i=1}^{n}\frac{1}{\eta_i} [\theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i}+(1-\theta_C^{(t)})* (\theta_B^{(t)})^{x_i}*(1-\theta_B^{(t)})^{\delta - x_i}]} \\ &=\frac{1}{n}\sum_{i=1}^{n}\frac{1}{\eta_i} \theta_C^{(t)}* (\theta_A^{(t)})^{x_i}*(1-\theta_A^{(t)})^{\delta - x_i} \end{aligned}

对比下前面直觉的结果,形式上非常接近:

θ ^ A ( t + 1 ) = i = 1 n x i P ( z i = 1 ) i = 1 n δ P ( z i = 1 ) \begin{aligned} \hat\theta_A^{(t+1)} & = \frac{\sum_{i=1}^{n}x_i * P(z_i=1|*)}{\sum_{i=1}^{n}\delta * P(z_i=1|*)} \end{aligned}

θ ^ B ( t + 1 ) = i = 1 n x i P ( z i = 0 ) i = 1 n δ P ( z i = 0 ) \begin{aligned} \hat\theta_B^{(t+1)} & = \frac{\sum_{i=1}^{n}x_i * P(z_i=0|*)}{\sum_{i=1}^{n}\delta * P(z_i=0|*)} \end{aligned}

θ ^ C ( t + 1 ) = i = 1 n P ( z i = 1 ) i = 1 n [ P ( z i = 0 ) + P ( z i = 1 ) ] = 1 n i = 1 n P ( z i = 1 ) \begin{aligned} \hat\theta_C^{(t+1)} & = \frac{\sum_{i=1}^{n} P(z_i=1|*)}{\sum_{i=1}^{n} [P(z_i=0|*)+P(z_i=1|*)]}=\frac{1}{n}\sum_{i=1}^{n} P(z_i=1|*) \end{aligned}

结束语

到此为止是为EM算法的第一层境界,我们通过直觉和推导两条线从形式上理解了EM算法是什么,解决了What的问题。接下来我们需要解决的是Why的问题,即EM算法的必要性和可行性的问题,这就是EM算法的第二重境界的问题了:

  • 必要性:原问题无法求解,或者求解难度很大。
  • 可行性:EM算法通过迭代“可以”达到理论最优点。

References

[1] https://www.zhihu.com/question/40797593/answer/275171156
[2] Do C B, Batzoglou S. What is the expectation maximization algorithm?[J]. Nature biotechnology, 2008, 26(8): 897-899.

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。