有点喜欢的mobileNet系列mobileNetv3

举报
yd_234306724 发表于 2020/12/27 22:57:53 2020/12/27
【摘要】 有点喜欢的mobileNet系列mobileNetv3 mobileNetV3介绍网络复现实现代码 mobilenetV3 large网络复现实现代码 mobilenetV3 small mobileNetV3介绍 mobileNet系统主要针对在手机上运能运行高性能低资源的网络。而mobileNetv3主要利用网络架构搜索(NAS),搜索出来的一种...

mobileNetV3介绍

mobileNet系统主要针对在手机上运能运行高性能低资源的网络。而mobileNetv3主要利用网络架构搜索(NAS),搜索出来的一种算法。它比v2版本的精度提高了ImageNet分类上提高了6%。
mobilev3主要由如下优点:
1.大量使用11和33的卷积代替55的卷积,减少了参数量。在v2中先使用33的卷积在使用11的卷积,而在v3中则先11在使用3*3。论文里说这样使用是保留了高维特征空间,减少了反向传播的延迟
2.引入残差块和轻量级的注意力机制,轻量级注意力模块
并激发成瓶颈结构,更好的提取特征。
在这里插入图片描述
3、采用了h-swish计算速度更快,在移动设备中提高了网络的准确性。
在这里插入图片描述

网络复现实现代码 mobilenetV3 large

from keras.layers import Conv2D, DepthwiseConv2D, Dense, GlobalAveragePooling2D,Input
from keras.layers import Activation, BatchNormalization, Add, Multiply, Reshape
from keras.models import Model
from keras import backend as K

alpha = 1
def relu6(x): # relu函数 return K.relu(x, max_value=6.0)

def hard_swish(x): # 利用relu函数乘上x模拟sigmoid return x * K.relu(x + 3.0, max_value=6.0) / 6.0

def return_activation(x, nl): # 用于判断使用哪个激活函数 if nl == 'HS': x = Activation(hard_swish)(x) if nl == 'RE': x = Activation(relu6)(x) return x

def conv_block(inputs, filters, kernel, strides, nl): # 一个卷积单元,也就是conv2d + batchnormalization + activation channel_axis = 1 if K.image_data_format() == 'channels_first' else -1 x = Conv2D(filters, kernel, padding='same', strides=strides)(inputs) x = BatchNormalization(axis=channel_axis)(x) return return_activation(x, nl)

def squeeze(inputs): # 注意力机制单元 input_channels = int(inputs.shape[-1]) x = GlobalAveragePooling2D()(inputs) x = Dense(int(input_channels/4))(x) x = Activation(relu6)(x) x = Dense(input_channels)(x) x = Activation(hard_swish)(x) x = Reshape((1, 1, input_channels))(x) x = Multiply()([inputs, x]) return x

def bottleneck(inputs, filters, kernel, up_dim, stride, sq, nl): channel_axis = 1 if K.image_data_format() == 'channels_first' else -1 input_shape = K.int_shape(inputs) tchannel = int(up_dim) cchannel = int(alpha * filters) r = stride == 1 and input_shape[3] == filters # 1x1卷积调整通道数,通道数上升 x = conv_block(inputs, tchannel, (1, 1), (1, 1), nl) # 进行3x3深度可分离卷积 x = DepthwiseConv2D(kernel, strides=(stride, stride), depth_multiplier=1, padding='same')(x) x = BatchNormalization(axis=channel_axis)(x) x = return_activation(x, nl) # 引入注意力机制 if sq: x = squeeze(x) # 下降通道数 x = Conv2D(cchannel, (1, 1), strides=(1, 1), padding='same')(x) x = BatchNormalization(axis=channel_axis)(x) if r: x = Add()([x, inputs]) return x

def MobileNetv3_large(shape = (224,224,3),n_class = 1000): inputs = Input(shape) # 224,224,3 -> 112,112,16 x = conv_block(inputs, 16, (3, 3), strides=(2, 2), nl='HS') x = bottleneck(x, 16, (3, 3), up_dim=16, stride=1, sq=False, nl='RE') # 112,112,16 -> 56,56,24 x = bottleneck(x, 24, (3, 3), up_dim=64, stride=2, sq=False, nl='RE') x = bottleneck(x, 24, (3, 3), up_dim=72, stride=1, sq=False, nl='RE') # 56,56,24 -> 28,28,40 x = bottleneck(x, 40, (5, 5), up_dim=72, stride=2, sq=True, nl='RE') x = bottleneck(x, 40, (5, 5), up_dim=120, stride=1, sq=True, nl='RE') x = bottleneck(x, 40, (5, 5), up_dim=120, stride=1, sq=True, nl='RE') # 28,28,40 -> 14,14,80 x = bottleneck(x, 80, (3, 3), up_dim=240, stride=2, sq=False, nl='HS') x = bottleneck(x, 80, (3, 3), up_dim=200, stride=1, sq=False, nl='HS') x = bottleneck(x, 80, (3, 3), up_dim=184, stride=1, sq=False, nl='HS') x = bottleneck(x, 80, (3, 3), up_dim=184, stride=1, sq=False, nl='HS') # 14,14,80 -> 14,14,112 x = bottleneck(x, 112, (3, 3), up_dim=480, stride=1, sq=True, nl='HS') x = bottleneck(x, 112, (3, 3), up_dim=672, stride=1, sq=True, nl='HS') # 14,14,112 -> 7,7,160 x = bottleneck(x, 160, (5, 5), up_dim=672, stride=2, sq=True, nl='HS') x = bottleneck(x, 160, (5, 5), up_dim=960, stride=1, sq=True, nl='HS') x = bottleneck(x, 160, (5, 5), up_dim=960, stride=1, sq=True, nl='HS') # 7,7,160 -> 7,7,960 x = conv_block(x, 960, (1, 1), strides=(1, 1), nl='HS') x = GlobalAveragePooling2D()(x) x = Reshape((1, 1, 960))(x) x = Conv2D(1280, (1, 1), padding='same')(x) x = return_activation(x, 'HS') x = Conv2D(n_class, (1, 1), padding='same', activation='softmax')(x) x = Reshape((n_class,))(x) model = Model(inputs, x) return model
if __name__ == "__main__": model = MobileNetv3_large() model.summary()


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121

网络复现实现代码 mobilenetV3 small

small主要减少了通道数,降低了参数量


from keras.layers import Conv2D, DepthwiseConv2D, Dense, GlobalAveragePooling2D,Input
from keras.layers import Activation, BatchNormalization, Add, Multiply, Reshape
from keras.models import Model
from keras import backend as K

alpha = 1
def relu6(x): # relu函数 return K.relu(x, max_value=6.0)

def hard_swish(x): # 利用relu函数乘上x模拟sigmoid return x * K.relu(x + 3.0, max_value=6.0) / 6.0

def return_activation(x, nl): # 用于判断使用哪个激活函数 if nl == 'HS': x = Activation(hard_swish)(x) if nl == 'RE': x = Activation(relu6)(x) return x

def conv_block(inputs, filters, kernel, strides, nl): # 一个卷积单元,也就是conv2d + batchnormalization + activation channel_axis = 1 if K.image_data_format() == 'channels_first' else -1 x = Conv2D(filters, kernel, padding='same', strides=strides)(inputs) x = BatchNormalization(axis=channel_axis)(x) return return_activation(x, nl)

def squeeze(inputs): # 注意力机制单元 input_channels = int(inputs.shape[-1]) x = GlobalAveragePooling2D()(inputs) x = Dense(int(input_channels/4))(x) x = Activation(relu6)(x) x = Dense(input_channels)(x) x = Activation(hard_swish)(x) x = Reshape((1, 1, input_channels))(x) x = Multiply()([inputs, x]) return x

def bottleneck(inputs, filters, kernel, up_dim, stride, sq, nl): channel_axis = 1 if K.image_data_format() == 'channels_first' else -1 input_shape = K.int_shape(inputs) tchannel = int(up_dim) cchannel = int(alpha * filters) r = stride == 1 and input_shape[3] == filters # 1x1卷积调整通道数,通道数上升 x = conv_block(inputs, tchannel, (1, 1), (1, 1), nl) # 进行3x3深度可分离卷积 x = DepthwiseConv2D(kernel, strides=(stride, stride), depth_multiplier=1, padding='same')(x) x = BatchNormalization(axis=channel_axis)(x) x = return_activation(x, nl) # 引入注意力机制 if sq: x = squeeze(x) # 下降通道数 x = Conv2D(cchannel, (1, 1), strides=(1, 1), padding='same')(x) x = BatchNormalization(axis=channel_axis)(x) if r: x = Add()([x, inputs]) return x

def MobileNetv3_small(shape = (224,224,3),n_class = 1000): inputs = Input(shape) # 224,224,3 -> 112,112,16 x = conv_block(inputs, 16, (3, 3), strides=(2, 2), nl='HS') # 112,112,16 -> 56,56,16 x = bottleneck(x, 16, (3, 3), up_dim=16, stride=2, sq=True, nl='RE') # 56,56,16 -> 28,28,24 x = bottleneck(x, 24, (3, 3), up_dim=72, stride=2, sq=False, nl='RE') x = bottleneck(x, 24, (3, 3), up_dim=88, stride=1, sq=False, nl='RE') # 28,28,24 -> 14,14,40 x = bottleneck(x, 40, (5, 5), up_dim=96, stride=2, sq=True, nl='HS') x = bottleneck(x, 40, (5, 5), up_dim=240, stride=1, sq=True, nl='HS') x = bottleneck(x, 40, (5, 5), up_dim=240, stride=1, sq=True, nl='HS') # 14,14,40 -> 14,14,48 x = bottleneck(x, 48, (5, 5), up_dim=120, stride=1, sq=True, nl='HS') x = bottleneck(x, 48, (5, 5), up_dim=144, stride=1, sq=True, nl='HS') # 14,14,48 -> 7,7,96 x = bottleneck(x, 96, (5, 5), up_dim=288, stride=2, sq=True, nl='HS') x = bottleneck(x, 96, (5, 5), up_dim=576, stride=1, sq=True, nl='HS') x = bottleneck(x, 96, (5, 5), up_dim=576, stride=1, sq=True, nl='HS') x = conv_block(x, 576, (1, 1), strides=(1, 1), nl='HS') x = GlobalAveragePooling2D()(x) x = Reshape((1, 1, 576))(x) x = Conv2D(1024, (1, 1), padding='same')(x) x = return_activation(x, 'HS') x = Conv2D(n_class, (1, 1), padding='same', activation='softmax')(x) x = Reshape((n_class,))(x) model = Model(inputs, x) return model
if __name__ == "__main__": model = MobileNetv3_small() model.summary()


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117

文章来源: blog.csdn.net,作者:快了的程序猿小可哥,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/qq_35914625/article/details/108015789

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。