Python中的np.random.seed()随机数种子:使得随机数据可预测

是Dream呀 发表于 2022/04/18 13:41:25 2022/04/18
【摘要】 Python中的np.random.seed()随机数种子:使得随机数据可预测

📢📢📢📣📣📣
🌻🌻🌻Hello,大家好我叫是Dream呀,一个有趣的Python博主,多多关照😜😜😜
🏅🏅🏅Python领域优质创作者,欢迎大家找我合作学习(文末有VX 想进学习交流群or学习资料 欢迎+++)
💕入门须知:这片乐园从不缺乏天才,努力才是你的最终入场券!🚀🚀🚀
💓最后,愿我们都能在看不到的地方闪闪发光,一起加油进步🍺🍺🍺
🍉🍉🍉“一万次悲伤,依然会有Dream,我一直在最温暖的地方等你”,唱的就是我!哈哈哈~🌈🌈🌈
🌟🌟🌟✨✨✨

在这里插入图片描述

前言: 最近在学习过程中总是遇到np.random.seed()这个问题,刚开始总是觉得不过是一个简单的随机数种子,就没太在意,后来遇到的次数多了,才发现他竟然是如此之用处之大!接下来我就把我所学到的关于np.random.seed()的知识分享给大家!

1. 何为随机数种子

随机数种子,相当于我给接下来需要生成的随机数一个初值,按照我给的这个初值,按固定顺序生成随机数
读到这,你如何还感觉得晦涩难懂的话,那我再举一个通俗易懂的例子:
看第一段代码:

import numpy as np
np.random.seed(0)  # 先定义一个随机数种子
print(np.random.rand(5))  # "随机"生成5个数

结果:

[0.5488135  0.71518937 0.60276338 0.54488318 0.4236548 ]

这里的rand(5)就是相当于生成五个数据

接着看第二段代码:

import numpy as np
np.random.seed(0)  # 先定义一个随机数种子
print(np.random.rand(5))  # "随机"生成5个数
print(np.random.rand(5))  # 再"随机"生成5个数

结果:

[0.5488135  0.71518937 0.60276338 0.54488318 0.4236548 ]
[0.64589411 0.43758721 0.891773   0.96366276 0.38344152]

这里我们生成了十个随机数。

最后我们看第三段代码:

import numpy as np
np.random.seed(0)  # 先定义一个随机数种子
print(np.random.rand(5))  # "随机"生成5个数
print(np.random.rand(5))  # 再"随机"生成5个数

np.random.seed(0)
for i in range(7):
    print(np.random.random())  # "随机"生成7个数

运行结果:

[0.5488135  0.71518937 0.60276338 0.54488318 0.4236548 ]
[0.64589411 0.43758721 0.891773   0.96366276 0.38344152]
0.7917250380826646
0.5288949197529045
0.5680445610939323
0.925596638292661
0.07103605819788694
0.08712929970154071
0.02021839744032572

接下来我们的对比一下,最后输出的7个随机数的结果和我们之前分两次输出的随机数列表,我们可以很清晰的看到:我们最后输出的7个随机数便是依次从我们之前的生成的10个随机数中取得的! 也就是说在代码中,我们看到 “ 随机 ” ,那就是说并不是真正随机(假随机)。

注意:
设置的seed()值仅一次有效

2. np.random.seed()参数问题

先看一段代码:

import numpy as np

np.random.seed(0)
print(np.random.rand(2, 3))

np.random.seed(1)
print(np.random.rand(2, 3))

np.random.seed(2)
print(np.random.rand(2, 3))

运行结果:

[[0.5488135  0.71518937 0.60276338]
 [0.54488318 0.4236548  0.64589411]]
[[4.17022005e-01 7.20324493e-01 1.14374817e-04]
 [3.02332573e-01 1.46755891e-01 9.23385948e-02]]
[[0.4359949  0.02592623 0.54966248]
 [0.43532239 0.4203678  0.33033482]]

由此可知:这个参数好像并没有什么实际的意义。
最后,我们得出结论:这个参数是随便取的,可以认为是初值的标志,每次按照这个标志都可以得到相同的初值。

3. 使用方法

使用之前都需要调用一下:np.random.seed(0)
错误实例:

import numpy as np
np.random.seed(1)

L1 = np.random.randn(3, 3)
L2 = np.random.randn(3, 3)
print(L1)
print(L2)
[[ 1.62434536 -0.61175641 -0.52817175]
 [-1.07296862  0.86540763 -2.3015387 ]
 [ 1.74481176 -0.7612069   0.3190391 ]]
[[-0.24937038  1.46210794 -2.06014071]
 [-0.3224172  -0.38405435  1.13376944]
 [-1.09989127 -0.17242821 -0.87785842]]

正确实例:

import numpy as np

np.random.seed(1)
L1 = np.random.randn(3, 3)
np.random.seed(1)
L2 = np.random.randn(3, 3)
print(L1)
print(L2)
[[ 1.62434536 -0.61175641 -0.52817175]
 [-1.07296862  0.86540763 -2.3015387 ]
 [ 1.74481176 -0.7612069   0.3190391 ]]
[[ 1.62434536 -0.61175641 -0.52817175]
 [-1.07296862  0.86540763 -2.3015387 ]
 [ 1.74481176 -0.7612069   0.3190391 ]]

4. 随机数种子问题总结

(1)随机数种子相当于给我们一个初值,之后按照固定顺序生成随机数(也就是我们说的超级长的 list )
(2)随机数种子对后面的结果一直有影响,在一个随机数种子后生成的随机数都受这个随机数种子的影响,即生成的随机数都是由这个随机数种子给的初值,按照固定顺序生成的
(3)每次使用之前都需要调用一下:np.random.seed(0)
(4)np.random.seed(0)中参数0是随便取的,可以认为是初值的标志,每次按照这个标志都可以得到相同的初值
参考资料:What does numpy.random.seed(0) do?

🌲🌲🌲 好啦,这就是今天要分享给大家的全部内容了

❤️❤️❤️如果你喜欢的话,就不要吝惜你的一键三连了~

在这里插入图片描述
在这里插入图片描述

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区),文章链接,文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件至:cloudbbs@huaweicloud.com进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容。
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。