prefix LM 和 causal LM 区别是什么?
        【摘要】  prefix LM 和 causal LM 区别是什么? 答案:Prefix LM(前缀语⾔模型)和Causal LM(因果语⾔模型)是两种不同类型的语⾔模型,它们的区别在于⽣成⽂本的⽅式和训练⽬标。1.Prefix LM:前缀语⾔模型是⼀种⽣成模型,它在⽣成每个词时都可以考虑之前的上下⽂信息。在⽣成时,前缀语⾔模型会根据给定的前缀(即部分⽂本序列)预测下⼀个可能的词。这种模型可以⽤于⽂本...
    
    
    
    prefix LM 和 causal LM 区别是什么?
答案:
Prefix LM(前缀语⾔模型)和Causal LM(因果语⾔模型)是两种不同类型的语⾔模型,它们的区别在于⽣成⽂本的⽅式和训练⽬标。
1.Prefix LM:前缀语⾔模型是⼀种⽣成模型,它在⽣成每个词时都可以考虑之前的上下⽂信息。在⽣成时,前缀语⾔模型会根据给定的前缀(即部分⽂本序列)预测下⼀个可能的词。这种模型可以⽤于⽂本⽣成、机器翻译等任务。
2.Causal LM:因果语⾔模型是⼀种⾃回归模型,它只能根据之前的⽂本⽣成后续的⽂本,⽽不能根据后续的⽂本⽣成之前的⽂本。在训练时,因果语⾔模型的⽬标是预测下⼀个词的概率,给定之前的所有词作为上下⽂。这种模型可以⽤于⽂本⽣成、语⾔建模等任务。
总结来说,前缀语⾔模型可以根据给定的前缀⽣成后续的⽂本,⽽因果语⾔模型只能根据之前的⽂本⽣成后续的⽂本。它们的训练⽬标和⽣成⽅式略有不同,适⽤于不同的任务和应⽤场景。
            【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
                cloudbbs@huaweicloud.com
                
            
        
        
        
        
        - 点赞
 - 收藏
 - 关注作者
 
            
           
评论(0)