Python实用脚本/算法集合, 附源代码下载
学习编程、学习Python最好的方式就是练习,哪怕是新手,只要不断地敲代码输出,肯定会有神效。
Python的练手项目很多,特别是Github上,建议不管新手、老司机都去看看。
这里推荐给大家两个Github上练习的项目,算法仓库-algorithms和脚本仓库-Python master。
后文会有相应源代码集打包下载,给需要的小伙伴。
algorithms算法仓库
首先来看看算法仓库-algorithms。
这里面集合众多核心算法的Python实现,比如排序、图计算、回溯、队列、流计算、堆、搜索、压缩等等。
该仓库支持第三方库安装,在python中进行调用,非常方便。
首先使用pip进行安装:
pip3 install algorithms
然后导入相关模块进行调用,比如sort模块里的merge_sort归并排序算法。
-
from algorithms.sort import merge_sort
-
-
if __name__ == "__main__":
-
my_list = [1, 8, 3, 5, 6]
-
my_list = merge_sort(my_list)
-
print(my_list)
个人感觉这个仓库里的算法很齐全,适合做练习,小伙伴们可以试试。
所有算法脚本已经打包好,获取步骤如下:
1,点击下方公众号 数据STUDIO 名片
2,关注 数据STUDIO后,在消息后台回复 b
▲点击关注「数据STUDIO」回复b
另外,@公众号:数据STUDIO 还为大家整理和筛选了大量火爆全网的Python数据科学学习资料,全部资料按需自助免费获取!直接点击👇链接:
Python脚本仓库
另外还有一个很好的练手项目,脚本仓库-Python master。
这个项目收集了作者平时工作用到的几千个实用小脚本,作者虽然不是程序员,但他这种用代码解决问题的习惯会极大的提升效率,也会迸发出更多的创新思维。
我觉得这样的代码每个人都可以写出来,只要慢慢积累多练习就可以。
举一个简单的例子,作者写了一个创建二维码的脚本,可以自动将url转化为二维码。
-
import pyqrcode
-
import png
-
from pyqrcode import QRCode
-
-
# Text which is to be converted to QR code
-
print("Enter text to convert")
-
s = input(": ")
-
# Name of QR code png file
-
print("Enter image name to save")
-
n = input(": ")
-
# Adding extension as .pnf
-
d = n + ".png"
-
# Creating QR code
-
url = pyqrcode.create(s)
-
# Saving QR code as a png file
-
url.show()
-
url.png(d, scale=6)
除此之外,该仓库中还有很多这样实用的脚本文件。
所有算法脚本已经打包好,获取步骤如下:
1,点击下方公众号 数据STUDIO 名片
2,关注 数据STUDIO后,在消息后台回复 d
▲点击关注「数据STUDIO」回复d
另外,@公众号:数据STUDIO 还为大家整理和筛选了大量火爆全网的Python数据科学学习资料,全部资料按需自助免费获取!直接点击👇链接:
接下来,展示一些更多的代码案例,供大家参考。
从图片中截取文字
-
# extract text from a img and its coordinates using the pytesseract module
-
import cv2
-
import pytesseract
-
-
# You need to add tesseract binary dependency to system variable for this to work
-
-
img = cv2.imread("img.png")
-
# We need to convert the img into RGB format
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
-
-
hI, wI, k = img.shape
-
print(pytesseract.image_to_string(img))
-
boxes = pytesseract.image_to_boxes(img)
-
for b in boxes.splitlines():
-
b = b.split(" ")
-
x, y, w, h = int(b[1]), int(b[2]), int(b[3]), int(b[4])
-
cv2.rectangle(img, (x, hI - y), (w, hI - h), (0, 0, 255), 0.2)
-
-
cv2.imshow("img", img)
-
cv2.waitKey(0)
判断闰年
-
def is_leap(year):
-
leap = False
-
if year % 4 == 0:
-
leap = True
-
if year % 100 == 0:
-
leap = False
-
if year % 400 == 0:
-
leap = True
-
return leap
-
-
year = int(input("Enter the year here: "))
-
print(is_leap(year))
打印图片分辨率
-
def jpeg_res(filename):
-
""""This function prints the resolution of the jpeg image file passed into it"""
-
-
# open image for reading in binary mode
-
with open(filename,'rb') as img_file:
-
-
# height of image (in 2 bytes) is at 164th position
-
img_file.seek(163)
-
-
# read the 2 bytes
-
a = img_file.read(2)
-
-
# calculate height
-
height = (a[0] << 8) + a[1]
-
-
# next 2 bytes is width
-
a = img_file.read(2)
-
-
# calculate width
-
width = (a[0] << 8) + a[1]
-
-
print("The resolution of the image is",width,"x",height)
-
-
jpeg_res("img1.jpg")
排序算法-桶排序
-
def bucket_sort(arr):
-
''' Bucket Sort
-
Complexity: O(n^2)
-
The complexity is dominated by nextSort
-
'''
-
# The number of buckets and make buckets
-
num_buckets = len(arr)
-
buckets = [[] for bucket in range(num_buckets)]
-
# Assign values into bucket_sort
-
for value in arr:
-
index = value * num_buckets // (max(arr) + 1)
-
buckets[index].append(value)
-
# Sort
-
sorted_list = []
-
for i in range(num_buckets):
-
sorted_list.extend(next_sort(buckets[i]))
-
return sorted_list
-
-
def next_sort(arr):
-
# We will use insertion sort here.
-
for i in range(1, len(arr)):
-
j = i - 1
-
key = arr[i]
-
while arr[j] > key and j >= 0:
-
arr[j+1] = arr[j]
-
j = j - 1
-
arr[j + 1] = key
-
return arr
机器学习-最近邻插值法
-
import math
-
-
def distance(x,y):
-
"""[summary]
-
HELPER-FUNCTION
-
calculates the (eulidean) distance between vector x and y.
-
-
Arguments:
-
x {[tuple]} -- [vector]
-
y {[tuple]} -- [vector]
-
"""
-
assert len(x) == len(y), "The vector must have same length"
-
result = ()
-
sum = 0
-
for i in range(len(x)):
-
result += (x[i] -y[i],)
-
for component in result:
-
sum += component**2
-
return math.sqrt(sum)
-
-
def nearest_neighbor(x, tSet):
-
"""[summary]
-
Implements the nearest neighbor algorithm
-
-
Arguments:
-
x {[tupel]} -- [vector]
-
tSet {[dict]} -- [training set]
-
-
Returns:
-
[type] -- [result of the AND-function]
-
"""
-
assert isinstance(x, tuple) and isinstance(tSet, dict)
-
current_key = ()
-
min_d = float('inf')
-
for key in tSet:
-
d = distance(x, key)
-
if d < min_d:
-
min_d = d
-
current_key = key
-
return tSet[current_key]
符串解码编码
-
# Implement the encode and decode methods.
-
-
def encode(strs):
-
"""Encodes a list of strings to a single string.
-
:type strs: List[str]
-
:rtype: str
-
"""
-
res = ''
-
for string in strs.split():
-
res += str(len(string)) + ":" + string
-
return res
-
-
def decode(s):
-
"""Decodes a single string to a list of strings.
-
:type s: str
-
:rtype: List[str]
-
"""
-
strs = []
-
i = 0
-
while i < len(s):
-
index = s.find(":", i)
-
size = int(s[i:index])
-
strs.append(s[index+1: index+1+size])
-
i = index+1+size
-
return strs
直方分布
-
def get_histogram(input_list: list) -> dict:
-
"""
-
Get histogram representation
-
:param input_list: list with different and unordered values
-
:return histogram: dict with histogram of input_list
-
"""
-
# Create dict to store histogram
-
histogram = {}
-
# For each list value, add one to the respective histogram dict position
-
for i in input_list:
-
histogram[i] = histogram.get(i, 0) + 1
-
return histogram
个人感觉这两个仓库里的算法和脚本很齐全,适合做练习,小伙伴们可以试试。
所有算法脚本已经打包好,获取步骤如下:
1,点击下方公众号 数据STUDIO 名片
2,关注 数据STUDIO后,在消息后台回复 b 或者 d
▲点击关注「数据STUDIO」回复b 或者 d
另外,@公众号:数据STUDIO 还为大家整理和筛选了大量火爆全网的Python数据科学学习资料,全部资料按需自助免费获取!直接点击👇链接:
文章来源: ityard.blog.csdn.net,作者:Python小二,版权归原作者所有,如需转载,请联系作者。
原文链接:ityard.blog.csdn.net/article/details/126515809
- 点赞
- 收藏
- 关注作者
评论(0)