仅包含外推轨道元数据的文件,可通过 SDP 工具包读取,二进制格式
【摘要】 Files containing only extrapolated orbital metadata, to be read via SDP Toolkit, Binary Format简介AM1EPHNE 是 Terra 近实时 (NRT) 2 小时航天器外推星历数据文件,采用原生格式。文件名格式如下:AM1EPHNE.Ayyyyddd.hhmm.vvv.yyyydddhhmmss,其...
Files containing only extrapolated orbital metadata, to be read via SDP Toolkit, Binary Format
简介
AM1EPHNE 是 Terra 近实时 (NRT) 2 小时航天器外推星历数据文件,采用原生格式。文件名格式如下:AM1EPHNE.Ayyyyddd.hhmm.vvv.yyyydddhhmmss,其中从左到右依次为:E = 外推;N = 原生格式;A = AM1 (Terra);yyyy = 数据年份,ddd = 儒略数据日,hh = 数据小时,mm = 数据分钟;vvv = 版本 ID;yyyy = 生产年份,ddd = 儒略生产日,hh = 生产小时,mm = 生产分钟,ss = 生产秒。
摘要
Additional Info
Field | Value |
---|---|
Last Updated | September 11, 2025, 8:26 AM (UTC+08:00) |
Created | April 1, 2025, 11:40 PM (UTC+08:00) |
accessLevel | public |
bureauCode | 026:00 |
catalog_conformsTo | https://project-open-data.cio.gov/v1.1/schema |
harvest_object_id | a351cfe1-7481-4ed8-be92-981f2e816302 |
harvest_source_id | b99e41c6-fe79-4c19-bbc3-9b6c8111bfac |
harvest_source_title | Science Discovery Engine |
identifier | 10.5067/MODIS/AM1EPHN0.NRT.061 |
landingPage | https://earthdata.nasa.gov/earth-observation-data/near-real-time/download-nrt-data/modis-nrt |
modified | 2025-09-10 |
programCode | 026:000 |
publisher | NASA/GSFC/SED/ESD/HBSL/BISB/MODAPS |
resource-type | Dataset |
source_datajson_identifier | true |
source_hash | 592020f2d2821ba07a40645c446fc6376d73e41ed9652f4e13ed85d93d9a4f8a |
source_schema_version | 1.1 |
spatial | ["CARTESIAN",[{"WestBoundingCoordinate":-180.0,"NorthBoundingCoordinate":90.0,"EastBoundingCoordinate":180.0,"SouthBoundingCoordinate":-90.0}]] |
temporal | 2016-01-24/2016-01-24 |
theme | "Earth Science" |
代码
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
import pandas as pd
import leafmap
url = "https://github.com/opengeos/NASA-Earth-Data/raw"
df = pd.read_csv(url, sep="\t")
df
leafmap.nasa_data_login()
results, gdf = leafmap.nasa_data_search(
short_name="AM1EPHNE",
cloud_hosted=True,
bounding_box=(-180.0, -90.0, 180.0, 90.0),
temporal=("2016-01-24", "2016-01-30"),
count=-1, # use -1 to return all datasets
return_gdf=True,
)
gdf.explore()
#leafmap.nasa_data_download(results[:5], out_dir="data")
【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)