【机器学习】嘿马机器学习(科学计算库)第9篇:Pandas,5.6 文件读取与存储【附代码文档】

🏆🏆🏆教程全知识点简介:1.机器学习常用科学计算库包括基础定位、目标。2. 人工智能概述涵盖人工智能应用场景、人工智能小案例、人工智能发展必备三要素、人工智能机器学习和深度学习。3. 机器学习概述包括机器学习工作流程、什么是机器学习、模型评估(回归模型评估、拟合)、Azure机器学习模型搭建、完整机器学习项目流程。4. 机器学习基础环境安装与使用包括Jupyter Notebook使用(一级标题、Jupyter Notebook中自动补全代码等相关功能拓展)。5. Matplotlib可视化涵盖Matplotlib HelloWorld(什么是Matplotlib、实现简单Matplotlib画图折线图、画出温度变化图、准备数据、创建画布、绘制折线图、显示图像、构造x轴刻度标签、修改坐标刻度显示、设置中文字体、设置正常显示符号、保存图片)、添加坐标轴刻度、添加网格显示、添加描述信息、图像保存、设置图形风格、常见图形绘制(常见图形种类意义、散点图绘制)。6. Numpy包括Numpy优势、N维数组ndarray(ndarray属性)、基本操作(生成数组方法、生成0和1数组、从现有数组生成、创建符合正态分布股某票涨跌幅数据)、数组间运算(数组与数的运算)。7. Pandas数据结构包括Series、DataFrame。8. 文件读取与存储涵盖CSV(read_csv)、HDF(read_hdf与to_hdf)、JSON(read_josn)。9. 高级处理数据离散化包括为什么要离散化、什么是数据离散化、股某票涨跌幅离散化(读取股某票数据、将股某票涨跌幅数据进行分组、股某票涨跌幅分组数据变成one_hot编码)、案例实现。

📚📚👉👉👉本站这篇博客: https://bbs.huaweicloud.com/blogs/453469 中查看
📚📚👉👉👉本站这篇博客: https://bbs.huaweicloud.com/blogs/458212 中查看
📚📚👉👉👉本站这篇博客: https://bbs.huaweicloud.com/blogs/458212 中查看
✨ 本教程项目亮点
🧠 知识体系完整:覆盖从基础原理、核心方法到高阶应用的全流程内容
💻 全技术链覆盖:完整前后端技术栈,涵盖开发必备技能
🚀 从零到实战:适合 0 基础入门到提升,循序渐进掌握核心能力
📚 丰富文档与代码示例:涵盖多种场景,可运行、可复用
🛠 工作与学习双参考:不仅适合系统化学习,更可作为日常开发中的查阅手册
🧩 模块化知识结构:按知识点分章节,便于快速定位和复习
📈 长期可用的技术积累:不止一次学习,而是能伴随工作与项目长期参考
🎯🎯🎯全教程总章节
🚀🚀🚀本篇主要内容
Pandas
学习目标
- 了解Numpy与Pandas的不同
- 说明Pandas的Series与Dataframe两种结构的区别
- 了解Pandas的MultiIndex与panel结构
- 应用Pandas实现基本数据操作
- 应用Pandas实现数据的合并
- 应用crosstab和pivot_table实现交叉表与透视表
- 应用groupby和聚合函数实现数据的分组与聚合
- 了解Pandas的plot画图功能
- 应用Pandas实现数据的读取和存储
5.6 文件读取与存储
学习目标
-
目标
-
了解Pandas的几种文件读取存储操作
- 应用CSV方式、HDF方式和json方式实现文件的读取和存储
的数据大部分存在于文件当中,所以pandas会支持复杂的IO操作,pandas的API支持众多的文件格式,如CSV、SQL、XLS、JSON、HDF5。
注:最常用的HDF5和CSV文件
1 CSV
1.1 read_csv
-
pandas.read_csv(filepath_or_buffer, sep =',', usecols )
-
filepath_or_buffer:文件路径
- sep :分隔符,默认用","隔开
-
usecols:指定读取的列名,列表形式
-
举例:读取之前的股某票的数据
# 读取文件,并且指定只获取'open', 'close'指标
data = pd.read_csv("./data/stock_day.csv", usecols=['open', 'close'])
open close
2018-02-27 23.53 24.16
2018-02-26 22.80 23.53
2018-02-23 22.88 22.82
2018-02-22 22.25 22.28
2018-02-14 21.49 21.92
1.2 to_csv
-
DataFrame.to_csv(path_or_buf=None, sep=', ’, columns=None, header=True, index=True, mode='w', encoding=None)
-
path_or_buf :文件路径
- sep :分隔符,默认用","隔开
- columns :选择需要的列索引
- header :boolean or list of string, default True,是否写进列索引值
- index:是否写进行索引
-
mode:'w':重写, 'a' 追加
-
举例:保存读取出来的股某票数据
-
保存'open'列的数据,然后读取查看结果
# 选取10行数据保存,便于观察数据
data[:10].to_csv("./data/test.csv", columns=['open'])
# 读取,查看结果
pd.read_csv("./data/test.csv")
Unnamed: 0 open
0 2018-02-27 23.53
1 2018-02-26 22.80
2 2018-02-23 22.88
3 2018-02-22 22.25
4 2018-02-14 21.49
5 2018-02-13 21.40
6 2018-02-12 20.70
7 2018-02-09 21.20
8 2018-02-08 21.79
9 2018-02-07 22.69
会发现将索引存入到文件当中,变成单独的一列数据。如果需要删除,可以指定index参数,删除原来的文件,重新保存一次。
# index:存储不会讲索引值变成一列数据
data[:10].to_csv("./data/test.csv", columns=['open'], index=False)
2 HDF5
2.1 read_hdf与to_hdf
HDF5文件的读取和存储需要指定一个键,值为要存储的DataFrame
- pandas.read_hdf(path_or_buf,key =None,** kwargs)
从h5文件当中读取数据
- path_or_buffer:文件路径
- key:读取的键
-
return:Theselected object
-
DataFrame.to_hdf(path_or_buf, key, **kwargs)
2.2 案例
- 读取文件
day_close = pd.read_hdf("./data/day_close.h5")
如果读取的时候出现以下错误
需要安装安装tables模块避免不能读取HDF5文件
pip install tables
- 存储文件
day_close.to_hdf("./data/test.h5", key="day_close")
[python-dateutil 文档]
再次读取的时候, 需要指定键的名字
new_close = pd.read_hdf("./data/test.h5", key="day_close")
注意:优先选择使用HDF5文件存储
- HDF5在存储的时候支持压缩,使用的方式是blosc,这个是速度最快的也是pandas默认支持的
- 使用压缩可以提磁盘利用率,节省空间
- HDF5还是跨平台的,可以轻松迁移到hadoop 上面
3 JSON
JSON是 常用的一种数据交换格式,前面在前后端的交互经常用到,也会在存储的时候选择这种格式。所以 需要知道Pandas如何进行读取和存储JSON格式。
3.1 read_json
-
pandas.read_json(path_or_buf=None, orient=None, typ='frame', lines=False)
-
将JSON格式准换成默认的Pandas DataFrame格式
-
orient : string,Indication of expected JSON string format.
-
'split' : dict like {index -> [index], columns -> [columns], data -> [values]}
- split 将索引总结到索引,列名到列名,数据到数据。将三部分都分开了
-
'records' : list like [{column -> value}, ... , {column -> value}]
- records 以
columns:values
的形式输出
- records 以
-
'index' : dict like {index -> {column -> value}}
- index 以
index:{columns:values}...
的形式输出
- index 以
-
'columns' : dict like {column -> {index -> value}},默认该格式
- colums 以
columns:{index:values}
的形式输出
- colums 以
-
'values' : just the values array
- values 直接输出值
-
-
lines : boolean, default False
- 按照每行读取json对象
-
typ : default ‘frame’, 指定转换成的对象类型series或者dataframe
3.2 read_josn 案例
[cryptography 文档]
- 数据介绍
这里使用一个新闻标题讽刺数据集,格式为json。is_sarcastic
:1讽刺的,否则为0;headline
:新闻报道的标题;article_link
:链接到原始新闻文章。存储格式为:
{"article_link": " "headline": "former versace store clerk sues over secret 'black code' for minority shoppers", "is_sarcastic": 0}
{"article_link": " "headline": "the 'roseanne' revival catches up to our thorny political mood, for better and worse", "is_sarcastic": 0}
- 读取
orient指定存储的json格式,lines指定按照行去变成一个样本
json_read = pd.read_json("./data/Sarcasm_Headlines_Dataset.json", orient="records", lines=True)
[PyTorch 文档]
结果为:
3.3 to_json
-
DataFrame.to_json(path_or_buf=None, orient=None, lines=False)
-
将Pandas 对象存储为json格式
- path_or_buf=None:文件地址
- orient:存储的json形式,{‘split’,’records’,’index’,’columns’,’values’}
- lines:一个对象存储为一行
3.4 案例
- 存储文件
json_read.to_json("./data/test.json", orient='records')
结果 ```python [{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/versace-black-code_us_5861fbefe4b0de3a08f600d5","headline":"former versace store clerk sues over secret 'black code' for minority shoppers","is_sarcastic":0},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/roseanne-revival-review_us_5ab3a497e4b054d118e04365","headline":"the 'roseanne' revival catches up to our thorny political mood, for better and worse","is_sarcastic":0},{"article_link":"https:\/\/local.theonion.com\/mom-starting-to-fear-son-s-web-series-closest-thing-she-1819576697","headline":"mom starting to fear son's web series closest thing she will have to grandchild","is_sarcastic":1},{"article_link":"https:\/\/politics.theonion.com\/boehner-just-wants-wife-to-listen-not-come-up-with-alt-1819574302","headline":"boehner just wants wife to listen, not come up with alternative debt-reduction ideas","is_sarcastic":1},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/jk-rowling-wishes-snape-happy-birthday_us_56911
- 点赞
- 收藏
- 关注作者
评论(0)