【Spring开发】SpringCloud服务端高级框架第8篇:4.2.AT模式,4.3.TCC模式【附代码文档】

举报
小帅说java 发表于 2025/09/11 13:13:23 2025/09/11
【摘要】 微服务保护、服务异步通信、消息中间件部署、分布式事务、搜索引擎、缓存、数据同步以及相关组件的安装配置等技术要点。在微服务保护方面,介绍了 Sentinel 的基础知识,包括雪崩问题、超时处理、舱壁模式、断路器机制,以及不同服务保护技术的对比;讲解了流量控制(簇点链路、流控模式、热点参数限流)、隔离与降级(FeignClient 整合 Sentinel、线程隔离)、授权规则(自定

🏆🏆🏆教程全知识点简介:微服务保护、服务异步通信、消息中间件部署、分布式事务、搜索引擎、缓存、数据同步以及相关组件的安装配置等技术要点。在微服务保护方面,介绍了 Sentinel 的基础知识,包括雪崩问题、超时处理、舱壁模式、断路器机制,以及不同服务保护技术的对比;讲解了流量控制(簇点链路、流控模式、热点参数限流)、隔离与降级(FeignClient 整合 Sentinel、线程隔离)、授权规则(自定义异常结果)及规则持久化(规则管理模式与 pull 模式),并演示了基于 Nacos 的规则持久化改造。服务异步通信部分探讨了消息可靠性(生产者消息确认、Return 回调、ConfirmCallback)、死信交换机、TTL 队列等高级应用。RabbitMQ 部署指南涵盖了单机部署、DelayExchange 插件安装、集群部署、镜像模式等内容。分布式事务部分介绍了 CAP 定理、BASE 理论、常见解决方案,Seata 的基础与部署(TC 服务部署、Nacos 配置、数据库表创建)、多种事务模式(XA 模式及优缺点、四种模式对比)和高可用架构。分布式搜索引擎章节讲解了 Elasticsearch 的原理(ELK 技术栈、倒排索引)、索引库与文档操作、RestAPI 与 RestClient 的使用、排序与高亮、酒店搜索案例(分页、竞价排名、ad标记、算分函数)、自动补全、数据同步(同步调用、监听 binlog)、集群搭建与脑裂问题、分片存储测试,以及单点 ES、Kibana、IK 分词器安装。缓存部分介绍了 Redis 持久化(RDB 与 AOF 对比)、单机安装 Redis、Redis 集群、多级缓存(JVM 进程缓存、Caffeine)、请求参数处理、Tomcat 查询、HTTP 工具与 CJSON 工具类、Redis 缓存查询。数据同步与网关部分包括 Canal 安装(开启 MySQL 主从、设置权限)、OpenResty 安装(开发库、目录结构、环境变量配置)及运行流程。


📚📚仓库code.zip 👉直接-->:   https://gitee.com/xiaoshuai112/Backend/blob/master/Spring/SpringCloud服务端高级框架/note.md    🍅🍅

✨ 本教程项目亮点

🧠 知识体系完整:覆盖从基础原理、核心方法到高阶应用的全流程内容
💻 全技术链覆盖:完整前后端技术栈,涵盖开发必备技能
🚀 从零到实战:适合 0 基础入门到提升,循序渐进掌握核心能力
📚 丰富文档与代码示例:涵盖多种场景,可运行、可复用
🛠 工作与学习双参考:不仅适合系统化学习,更可作为日常开发中的查阅手册
🧩 模块化知识结构:按知识点分章节,便于快速定位和复习
📈 长期可用的技术积累:不止一次学习,而是能伴随工作与项目长期参考


🎯🎯🎯全教程总章节


🚀🚀🚀本篇主要内容

4.2.AT模式

AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷。

4.2.1.Seata的AT模型

基本流程图:

阶段一RM的工作:

  • 注册分支事务
  • 记录undo-log(数据快照)
  • 执行业务sql并提交
  • 报告事务状态

阶段二提交时RM的工作:

  • 删除undo-log即可

阶段二回滚时RM的工作:

  • 根据undo-log恢复数据到更新前

4.2.2.流程梳理

用一个真实的业务来梳理下AT模式的原理。

比如,现在又一个数据库表,记录用户余额:

id money
1 100

其中一个分支业务要执行的SQL为:

update tb_account set money = money - 10 where id = 1

AT模式下,当前分支事务执行流程如下:

一阶段:

1)TM发起并注册全局事务到TC

2)TM调用分支事务

3)分支事务准备执行业务SQL

4)RM拦截业务SQL,根据where条件查询原始数据,形成快照。

{
    "id": 1, "money": 100
}

[Apache Tomcat 文档]

5)RM执行业务SQL,提交本地事务,释放数据库锁。此时 money = 90

6)RM报告本地事务状态给TC

二阶段:

1)TM通知TC事务结束

2)TC检查分支事务状态

​ a)如果都成功,则立即删除快照

​ b)如果有分支事务失败,需要回滚。读取快照数据({"id": 1, "money": 100}),将快照恢复到数据库。此时数据库再次恢复为100

流程图:

[Spring Security API 文档]

4.2.3.AT与XA的区别

简述AT模式与XA模式最大的区别是什么?

  • XA模式一阶段不提交事务,锁定资源;AT模式一阶段直接提交,不锁定资源。
  • XA模式依赖数据库机制实现回滚;AT模式利用数据快照实现数据回滚。
  • XA模式强一致;AT模式最终一致

4.2.4.脏写问题

在多线程并发访问AT模式的分布式事务时,有可能出现脏写问题,如图:

解决思路就是引入了全局锁的概念。在释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据。

[Spark Java 文档]

4.2.5.优缺点

AT模式的优点:

  • 一阶段完成直接提交事务,释放数据库资源,性能比较好
  • 利用全局锁实现读写隔离
  • 没有代码侵入,框架自动完成回滚和提交

AT模式的缺点:

  • 两阶段之间属于软状态,属于最终一致
  • 框架的快照功能会影响性能,但比XA模式要好很多

4.2.6.实现AT模式

AT模式中的快照生成、回滚等动作都是由框架自动完成,没有任何代码侵入,因此实现非常简单。

只不过,AT模式需要一个表来记录全局锁、另一张表来记录数据快照undo_log。

[Ehcache 文档]

1)导入数据库表,记录全局锁

导入课前资料提供的Sql文件:seata-at.sql,其中lock_table导入到TC服务关联的数据库,undo_log表导入到微服务关联的数据库:

2)修改application.yml文件,将事务模式修改为AT模式即可:

seata:
  data-source-proxy-mode: AT # 默认就是AT

[HikariCP 连接池]

3)重启服务并测试

4.3.TCC模式

TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:

  • Try:资源的检测和预留;

  • Confirm:完成资源操 务;要求 Try 成功 Confirm 一定要能成功。

  • Cancel:预留资源释放,可以理解为try的反向操作。

4.3.1.流程分析

举例,一个扣减用户余额的业务。假设账户A原来余额是100,需要余额扣减30元。

  • 阶段一( Try ):检查余额是否充足,如果充足则冻结金额增加30元,可用余额扣除30

初识余额:

余额充足,可以冻结:

此时,总金额 = 冻结金额 + 可用金额,数量依然是100不变。事务直接提交无需等待其它事务。

  • 阶段二(Confirm):假如要提交(Confirm),则冻结金额扣减30

确认可以提交,不过之前可用金额已经扣减过了,这里只要清除冻结金额就好了:

此时,总金额 = 冻结金额 + 可用金额 = 0 + 70 = 70元

  • 阶段二(Canncel):如果要回滚(Cancel),则冻结金额扣减30,可用余额增加30

需要回滚,那么就要释放冻结金额,恢复可用金额:

4.3.2.Seata的TCC模型

Seata中的TCC模型依然延续之前的事务架构,如图:

[Spring Boot 官方文档]

4.3.3.优缺点

TCC模式的每个阶段是做什么的?

  • Try:资源检查和预留
  • Confirm:业务执行和提交
  • Cancel:预留资源的释放

TCC的优点是什么?

  • 一阶段完成直接提交事务,释放数据库资源,性能好
  • 相比AT模型,无需生成快照,无需使用全局锁,性能最强
  • 不依赖数据库事务,而是依赖补偿操作,可以用于非事务型数据库

TCC的缺点是什么?

  • 有代码侵入,需要人为编写try、Confirm和Cancel接口,太麻烦
  • 软状态,事务是最终一致
  • 需要考虑Confirm和Cancel的失败情况,做好幂等处理

4.3.4.事务悬挂和空回滚

1)空回滚

当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚

如图:

执行cancel操作时,应当判断try是否已经执行,如果尚未执行,则应该空回滚。

2)业务悬挂

对于已经空回滚的业务,之前被阻塞的try操作恢复,继续执行try,就永远不可能confirm或cancel ,事务一直处于中间状态,这就是业务悬挂

执行try操作时,应当判断cancel是否已经执行过了,如果已经执行,应当阻止空回滚后的try操作,避免悬挂

4.3.5.实现TCC模式

解决空回滚和业务悬挂问题,必须要记录当前事务状态,是在try、还是cancel?

1)思路分析

这里 定义一张表:

CREATE TABLE `account_freeze_tbl` (
  `xid` varchar(128) NOT NULL,
  `user_id` varchar(255) DEFAULT NULL COMMENT '用户id',
  `freeze_money` int(11) unsigned DEFAULT '0' COMMENT '冻结金额',
  `state` int(1) DEFAULT NULL COMMENT '事务状态,0:try,1:confirm,2:cancel',
  PRIMARY KEY (`xid`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPACT;

[Dozer 映射框架]

其中:

  • xid:是全局事务id
  • freeze_money:用来记录用户冻结金额
  • state:用来记录事务状态

那此时, 的业务开怎么做呢?

  • Try业务:
  • 记录冻结金额和事务状态到account_freeze表
  • 扣减account表可用金额
  • Confirm业务
  • 根据xid删除account_freeze表的冻结记录
  • Cancel业务
  • 修改account_freeze表,冻结金额为0,state为2
  • 修改account表,恢复可用金额
  • 如何判断是否空回滚?
  • cancel业务中,根据xid查询account_freeze,如果为null则说明try还没做,需要空回滚
  • 如何避免业务悬挂?
  • try业务中,根据xid查询account_freeze ,如果已经存在则证明Cancel已经执行,拒绝执行try业务

接下来, 改造account-service,利用TCC实现余额扣减功能。

2)声明TCC接口

TCC的Try、Confirm、Cancel方法都需要在接口中基于注解来声明,

在account-service项目中的cn.itcast.account.service包中新建一个接口,声明TCC三个接口: ```java package cn.itcast.account.service;

import io.seata.rm.tcc.api.BusinessActionContext; import io.seata.rm.tcc.api.BusinessActionContextParameter; import io.seata.rm.tcc.api.LocalTCC; import io.seata.rm.tcc.api.TwoPhaseBusinessAction;

@LocalTCC public interface AccountTCCService {

【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。